Involution and commutator length for complex hyperbolic isometries - Archive ouverte HAL
Article Dans Une Revue The Michigan Mathematical Journal Année : 2017

Involution and commutator length for complex hyperbolic isometries

Pierre Will

Résumé

We study decompositions of complex hyperbolic isometries as products of involutions. We show that PU(2,1) has involution length 4 and commutator length 1, and that for all $n \geqslant 3$ PU($n$,1) has involution length at most 8.

Dates et versions

hal-02296968 , version 1 (25-09-2019)

Identifiants

Citer

Julien Paupert, Pierre Will. Involution and commutator length for complex hyperbolic isometries. The Michigan Mathematical Journal, 2017, 66 (4), pp.699-744. ⟨10.1307/mmj/1501812020⟩. ⟨hal-02296968⟩
21 Consultations
0 Téléchargements

Altmetric

Partager

More