Keys and Demazure crystals for Kac-Moody algebras - Archive ouverte HAL Access content directly
Journal Articles Journal of Combinatorial Algebra Year : 2020

Keys and Demazure crystals for Kac-Moody algebras

Nicolas Jacon
  • Function : Author
  • PersonId : 832653
Cédric Lecouvey


The Key map is an important tool in the determination of the Demazure crystals associated to Kac-Moody algebras. In finite type A, it can be computed in the tableau realization of crystals by a simple combinatorial procedure due to Lascoux and Schützenberger. We show that this procedure is a part of a more general construction holding in the Kac-Moody case that we illustrate in finite types and affine type A. In affine type A, we introduce higher level generalizations of core partitions which notably give interesting analogues of the Young lattice and are expected to parametrize distinguished elements of certain remarkable blocks for Ariki-Koike algebras.
Fichier principal
Vignette du fichier
Key17.pdf (322.66 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-02292653 , version 1 (20-09-2019)
hal-02292653 , version 2 (24-09-2019)
hal-02292653 , version 3 (16-10-2019)



Nicolas Jacon, Cédric Lecouvey. Keys and Demazure crystals for Kac-Moody algebras. Journal of Combinatorial Algebra, 2020, 4 (4), pp.325-358. ⟨10.4171/JCA/46⟩. ⟨hal-02292653v3⟩
302 View
153 Download



Gmail Facebook X LinkedIn More