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Introduction

Kac-Moody algebras are infinite-dimensional analogues of semisimple Lie algebras. Their classification is based on the notion of Cartan datum, a generalization of the finite root systems. In particular, a Kac-Moody algebra g admits an enveloping algebra U (g), a Weyl group W , a weight lattice P and a cone P + of dominant weights. To each dominant weight λ is associated a highest weight U (g)-module V (λ). The works of Kashiwara, Lusztig and Littelmann during the 90's have shown the existence of a fundamental object associated to V (λ): the crystal B(λ). It is an oriented graph whose combinatorics encodes many informations on V (λ). In particular, it is endowed with a weight function with values in P whose generating series over B(λ) coincides with the character of V (λ) (see [START_REF] Kashiwara | On crystal bases, Representations of groups[END_REF] and the references therein). The graph B(λ) admits a unique source vertex b λ (its highest weight vertex) and there is a simple action of the Weyl group W on B(λ). Also for λ, µ in P + , the crystal

B(λ) ⊗ B(µ) = {b ⊗ b ′ | b ∈ B(λ), b ′ ∈ B(µ)
} of the tensor product V (λ) ⊗ V (µ) can be easily computed from B(λ) and B(µ). In particular, b λ ⊗ b µ is of highest weight λ+ µ in B(λ)⊗ B(µ). The crystals with highest weight vertices b λ ⊗b µ and b µ ⊗b λ in B(λ)⊗B(µ) and B(µ)⊗B(λ) are then isomorphic. The corresponding isomorphism can be regarded as the restriction of more general isomorphisms between B(λ) ⊗ B(µ) and B(µ) ⊗ B(λ) called combinatorial R-matrices.

The Demazure modules V (λ) w are U + (g)-submodules of V (λ) defined for any w ∈ W . Quite remarkably, each such Demazure module V (λ) also admits a crystal B w (λ) which is a subgraph of B(λ). It has been proved by Littelmann that the generating series of the weight function over B w (λ) gives the Demazure character of B w (λ). Given the crystal B(λ), it is a natural question to ask whether a vertex b in B(λ) belongs to a Demazure crystal B w (λ). This problem may be solved by using a combinatorial procedure which involves the computation of a certain map called the right Key map. This map associates to each vertex b of B(λ) an element K R (b) in the orbit O(λ) of b λ under the action of W . The Key map can be computed in any realization of the abstract crystal B(λ) but has a great combinatorial complexity. Observe also that the algebra U + (g) admits a crystal B(∞) with Demazure crystals B w (∞), w ∈ W and associated Key maps.

In finite type A (i.e. for the Lie algebras sl n ), the dominant weights λ can be regarded as partitions and each crystal B(λ) has a simple realization in terms of semistandard tableaux of shape λ. In [START_REF] Lascoux | and Keys and standard bases[END_REF], Lascoux and Schützenberger defined a simple procedure associating to such a tableau a "Key" tableau defined as a semistandard tableau such that each column of height h is included in any column of height h ′ ≥ h. They then showed that these Key tableaux permit to compute the Demazure characters. By using the Littelmann path model and the dilatation of crystals introduced by Kashiwara, one can then prove that the Key map defined in [START_REF] Lascoux | and Keys and standard bases[END_REF] can be recover from the previous general definition when the crystals B(λ) are realized in terms of semistandard tableaux.

The main goal of this paper is to give a general reduction procedure to compute the Key map for any Kac-Moody algebra. Our strategy is to show that the approach of Lascoux and Schützenberger can be generalized to any crystal B(λ) associated to any Kac-Moody algebra. More precisely, we explain how the Key map K R can be computed for any weight λ, recursively on λ essentially by reduction to the case of the fundamental weights. In this perspective, the Demazure crystals can be characterized by the Key map for the fundamental Date: October, 2019.

weights, the previous restrictions of combinatorial R-matrices and the description of the strong Bruhat order on cosets of W . In particular, in finite type A, the Key map for a fundamental weight is the identity, the combinatorial R-matrices can be computed on tableaux by the Jeu de Taquin procedure and the strong Bruhat order is easy to describe. Thus one recovers the results of [START_REF] Lascoux | and Keys and standard bases[END_REF]. For the classical types and for type G 2 , there are analogue simple tableaux models and we then illustrate our general procedure by giving natural extension of Lascoux-Schützenberger's construction. They might also be adapted to the remaining exceptional cases based on the "tableaux" existing model for crystals (see [START_REF] Bump | Crystal bases representations and combinatorics[END_REF]). This suggests that recent results by Brubaker and al. [START_REF] Brubaker | Colored five-vertex models and Demazure atoms[END_REF], Masson [35] and Proctor [START_REF] Proctor | Semistandard tableaux for Demazure characters (key polynomials) and their atoms[END_REF] for type A might have generalizations in finite types. Note that we were informed during the redaction of this paper that Santos [START_REF] Santos | Symplectic keys and Demazure atoms in type C, in preparation[END_REF] also simultaneously got the description of the Key in type C. His approach, based on the symplectic plactic monoid, is nevertheless distinct from ours. It is also worth mentioning that the Key map can be computed as the last direction of paths in the alcove path model [START_REF] Lenart | On the combinatorics of crystal graphs, I. Lusztig's involution[END_REF] and there exist crystal isomorphisms [START_REF] Lenart | A generalization of the alcove model and its applications[END_REF] between this model and the tableaux model of Kashiwara and Nakashima. We next focus on the affine type A

(1) e-1 for which there also exists an interesting crystal model using multipartitions and related to the modular representation theory of Ariki-Koike algebras (some generalizations of the Hecke algebras). When λ = ω i is a fundamental weight, O(ω i ) is parametrized by particular partitions called e-cores and the Key map can be computed thanks to a combinatorial procedure introduced in [START_REF] Ariki | On the product of two basic representations of Uv( sle)[END_REF]. Also the strong Bruhat order on O(ω i ) corresponds to the inclusion of the Young diagrams of the e-cores. Thus, we can apply the previous reduction. Along the way, we introduce higher level generalizations of the core partitions which give interesting analogues of the Young lattice and which have a nice interpretation in terms of the block theory of Ariki-Koike algebras [START_REF] Jacon | Cores of Ariki-Koike algebras[END_REF]. Let us conclude by mentioning there are also quite simple combinatorial models for the highest weight crystals in any affine type (see for example [START_REF] Hong | Introduction to quantum groups and crystal bases[END_REF]). It would be interesting to have a combinatorial description of the key maps and the R-matrices for the fundamental weights in this setting.

The paper is organized as follows. Section 2 is a recollection of basics facts on crystals and Demazure characters. In Section 3, we present the previous recursive procedure to compute the Key map. We explain how it can be used for Demazure crystals associated to finite types in Section 4. The affine type A case is studied in Section 5 where we introduce the notion of (e, s)-core as a natural labelling of the orbit of the empty multipartition in Uglov's and Kleshchev realizations of crystals. We also describe the Key map on Kleshchev multipartitions. Finally, we explain how our results on the the Demazure subcrystals in B(λ) can be used to characterize the Demazure subcrystals in B(∞).

Background on Keys and Demazure crystals

2.1. Crystals for integrable modules over Kac-Moody algebras.

2.1.1. Background on root systems and Kac-Moody algebras. Let I be a finite set and A = (a i,j ) (i,j)∈I 2 be a generalized Cartan matrix of rank r. This means that the entries of the matrix satisfy the following conditions [START_REF] Ariki | On the product of two basic representations of Uv( sle)[END_REF] 

a i,j ∈ Z for i, j ∈ I 2 , ( 2 
) a i,i = 2 for i ∈ I 2 , (3) 
a i,j = 0 if and only if a j,i = 0 for i, j ∈ I 2 . We will also assume that A is indecomposable: given subsets I and J of {1, . . . , n}, there exists (i, j) ∈ I 2 such that a i,j = 0. We refer to [START_REF] Kac | Infinite dimensional Lie algebras[END_REF] for the classification of indecomposable generalized Cartan matrices. Recall there exist only three kinds of such matrices: when all the principal minors of A are positive, A is of finite type and corresponds to the Cartan matrix of a simple Lie algebra over C; when all the proper principal minors of A are positive and det(A) = 0 the matrix A is said of affine type; otherwise A is of indefinite type. For technical reasons, from now on, we will restrict ourselves to symmetrizable generalized Cartan matrices i.e. we will assume there exists a diagonal matrix D with entries in Z >0 such that DA is symmetric.

The root and weight lattices associated to a generalized symmetrizable Cartan matrix are defined by mimicking the construction for the Cartan matrices of finite type. Let P ∨ be a free abelian group of rank 2 |I|r with Z-basis {h i | i ∈ I} ∪ {d 1 , . . . , d |I|-r }. Set h := P ∨ ⊗ Z C and h R := P ∨ ⊗ Z R. The weight lattice P is then defined by

P := {γ ∈ h * | γ(P ∨ ) ⊂ Z}. Set Π ∨ := {h i | i ∈ I}.
One can then choose a set Π := {α i | i ∈ I} of linearly independent vectors in P ⊂ h * such that α i (h j ) = a i,j for i, j ∈ I 2 and α i (d j ) ∈ {0, 1} for i ∈ {1, . . . , |I| -r}. The elements of Π are the simple roots. The free abelian group Q := |I| i=1 Zα i is the root lattice. The quintuple (A, Π, Π ∨ , P, P ∨ ) is called a generalized Cartan datum associated to the matrix A. Let P + = {λ ∈ P | λ(h i ) ≥ 0 for any i ∈ I} be the set of dominant weights. For any i ∈ I, the fundamental weight ω i ∈ P is such that ω i (h j ) = δ i,j for j ∈ I and ω i (d j ) = 0 for j ∈ {1, . . . , |I| -r}.

For any i ∈ I, we define the simple reflection s i on h * by (1)

s i (γ) = γ -h i (γ)α i for any γ ∈ P .
The Weyl group W is the subgroup of GL(h * ) generated by the reflections s i . This is a Coxeter group acting on the weight lattice P and we refer the reader to [START_REF] Bjorner | Combinatorics of Coxeter groups[END_REF] for a complete exposition. In particular, all the reduced decompositions of a fixed w ∈ W have the same length ℓ(w). In the sequel we shall need the following characterizations of the strong Bruhat order and the weak Bruhat order ≤ on W . Given u and v in W , we have

• u v if and only if every reduced decomposition of v admits a subword that is a reduced decomposition of u. • u ≤ v if and only if there are reduced decompositions of u and v such that u is a suffix of v.

Of course, if u ≤ v, we have u v but the converse is not true in general. For any dominant weight λ, write W λ for the stabilizer of λ under the action of W . Every w ∈ W then admits a unique decomposition on the form w = p λ (w)v with v ∈ W λ and p λ (w) ∈ W of minimal length. Let us denote by W λ the image of W by the projection map p λ . By setting J λ = {i ∈ I | s i (λ) = λ}, we get that u belongs to W λ if and only if none of its reduced decompositions ends with a generator s i such that i ∈ J λ (alternatively all its reduced expressions ends with a generator s i , i / ∈ J λ ). Finally recall that for any w and w ′ in W , we have

(2) w w ′ =⇒ p λ (w) p λ (w ′ ).
We have in fact the more precise lemma (which follows from Theorem 2.6.1 in [START_REF] Bjorner | Combinatorics of Coxeter groups[END_REF])

Lemma 2.1. Assume λ, µ are dominant weights and (w, w ′ ) ∈ W λ+µ × W λ+µ . Then

w w ′ ⇐⇒ p λ (w) p λ (w ′ ), p µ (w) p µ (w ′ ).
Let g be the symmetrizable Kac-Moody algebra associated to the generalized Cartan matrix A. We yet refer to [START_REF] Kac | Infinite dimensional Lie algebras[END_REF] for a detailed definition of g and write as usual R its root system and P its weight lattice. The algebra g admits a presentation by relations on its Chevalley type generators e i , f i , i ∈ I and h ∈ P * . There exists a relevant semisimple category O int of integrable g-modules whose simple are parametrized by the dominant weights in P + . To each λ ∈ P + corresponds a unique (up to isomorphism) irreducible highest weight integrable g-module V (λ) of highest weight λ. The irreducible module V (λ) decomposes into weight spaces V (λ) = γ∈P V (λ) γ ; and each weight space V (λ) γ is finite-dimensional. Consider the ring algebra Z[P ] with basis the formal exponentials e β , β ∈ P . We have an action of W on Z[P ] defined by w

• e β = e w(β) . Set Z W [P ] = {X ∈ Z[P ] | w(X) = X}. The character s λ of V (λ) is the element of Z[P ] defined by s λ := γ∈P K λ,γ e γ where K λ,γ := dim(V (λ) γ ). It belongs in fact to Z W [P ] because K λ,γ = K λ,w(γ) for any w ∈ W .
We have the Weyl-Kac character formula: for any λ ∈ P + , (3)

s λ = w∈W ε(w)e w(λ+ρ)-ρ α∈R + (1 -e -α ) mα
where m α is the multiplicity of the roots α (equal to 1 in the finite case).

The quantum group U q (g) is also defined from the same generalized Cartan matrix A. It also admits a presentation by generators and relations which can be regarded as q-deformation of that of g (see [START_REF] Kashiwara | On crystal bases, Representations of groups[END_REF]). Roughly speaking, one obtains the enveloping algebra U (g) of g as the limit of U q (g) when q tends to 1. This implies that the representation theory of U q (g) is essentially similar to that of U (g) and thus also to that of g. Therefore, for simplicity and since we do not need to distinguish the different module structures in the sequel, we will use the same notation for the category of integrable modules of g,U (g) and U q (g). In particular, for each dominant weight λ, there exists a unique U q (g)-module in O int also denoted by V (λ).

2.1.2. Crystals of integrable modules. To each dominant weight λ corresponds a crystal graph B(λ) which can be regarded as the combinatorial skeleton of the simple module V (λ). Its structure can be defined from the notion of canonical bases as introduced by Lusztig [START_REF] Lusztig | Canonical bases arising from quantized enveloping algebras[END_REF] and subsequently studied by Kashiwara under the name of global bases (see [START_REF] Kashiwara | On crystal bases, Representations of groups[END_REF] and [START_REF] Kashiwara | Bases cristallines des groupes quantiques[END_REF]). It also has a purely combinatorial definition in terms of Littelmann's path model (see [START_REF] Littelmann | A Littlewood-Richardson type rule for symmetrizable Kac-Moody algebras[END_REF]). The crystal B(λ) is a graph whose set of vertices is endowed with a weight function wt : B(λ) → P and with the structure of a colored and oriented graph given by the action of the crystal operators fi and ẽi with i ∈ I. More precisely, we have an oriented arrow b More generally, the crystal B M of any module M in O int is the disjoint union of the crystals associated to the irreducible modules appearing in its decomposition. In particular, the multiplicity of the irreducible module V (λ) in M corresponds to the number of copies of the crystal B(λ) in B M . Consider M and N two modules in O int with crystals B M and B N , respectively. The crystal associated to M ⊗ N is the crystal B M ⊗ B N whose set of vertices is the direct product of the sets of vertices of B M and B N and whose crystal structure is given by the following rules

1 (4) ẽi (u ⊗ v) = u ⊗ ẽi (v) if ε i (u) ≤ ϕ i (v) ẽi (u) ⊗ v if ε i (u) > ϕ i (v) and fi (u ⊗ v) = fi (u) ⊗ v if ϕ i (v) ≤ ε i (u) u ⊗ fi (v) if ϕ i (v) > ε i (u) .
A crystal B(∞) for the positive part U + q (g) of the quantum group U q (g) is also available by the results of Lusztig [START_REF] Lusztig | Canonical bases arising from quantized enveloping algebras[END_REF] and Kashiwara [22]. This crystal B(∞) admits a unique source vertex b ∅ . Moreover, for any λ ∈ P + , there exists a unique embedding of crystals π λ : B(λ) ֒→ B(∞) so that for any path

b = fi 1 • • • fir (b λ ) in B(λ), we have π λ (b) = fi 1 • • • fir (b ∅ ) in B(∞).

Cosets of the Weyl group and crystals.

There is a one-to-one correspondence between W λ and O(λ) which associates to each w ∈ W λ the vertex b wλ . Also in O(λ), the vertices b wλ and b s i wλ are such that [START_REF] Bump | Crystal bases representations and combinatorics[END_REF] b

s i wλ = f ϕ i (b wλ ) i b wλ with ε i (b wλ ) = 0 if ℓ(s i w) = ℓ(w) + 1, b s i wλ = ẽε i (b wλ ) i b wλ with ϕ i (b wλ ) = 0 if ℓ(s i w) = ℓ(w) -1.
In particular, for any element b wλ ∈ O(λ) and any i ∈ I, we have either ε i (b wλ ) = 0, or ϕ i (b wλ ) = 02 . Now if w belongs to W λ with reduced decomposition w = s i 1 • • • s i ℓ , we will have

b wλ = f a ℓ i ℓ • • • f a 1 i 1 (b λ ) = s i ℓ • • • s i 1 • b λ with a 1 = ϕ i 1 (b λ ) and a k = ϕ i k ( f a k-1 i k-1 • • • f a 1 i 1 b λ ) for k = 2, . . . , ℓ.
The converse is true which permits to identify the reduced expressions of w = s i ℓ • • • s i 1 ∈ W λ with the directed paths in O(λ) from b λ to b wλ . In some sense, the crystal B(λ) can be regarded as an automaton which associates to any w ∈ W , its projection p λ (w) on W λ .

On can also observe that O(λ) has the structure of the Hasse diagram on W λ by putting arrows b wλ b s i wλ when ℓ(s i w) = ℓ(w) + 1. 

= fi 1 • • • fi k (b λ ) in B(λ), we have ψ m (b) = f m i 1 • • • f m i k (b mλ ). Since the vertex b ⊗m λ is of highest weight mλ in B(λ) ⊗m , one gets a particular realization B(b ⊗m λ ) of B(mλ) in B(λ) ⊗m with highest weight vertex b ⊗m λ .
This thus gives a canonical embedding Lemma 2.2. The map 

(6) K m : B(b λ ) ֒→ B(b ⊗m λ ) ⊂ B(b λ ) ⊗m b -→ b 1 ⊗ • • • ⊗ b m
K ′ m : B(b λ ⊗ b µ ) ֒→ B(b ⊗m λ ⊗ b ⊗m µ ) b 1 ⊗ b 2 -→ K m (b 1 ) ⊗ K m (b 2 ) is a m-dilatation of B(b λ ⊗ b µ ), that is for any i ∈ I we have K ′ m ( fi (b 1 ⊗ b 2 )) = f m i K ′ m (b 1 ⊗ b 2 ) and K ′ m (ẽ i (b 1 ⊗ b 2 )) = ẽm i K ′ m (b 1 ⊗ b 2 ). Theorem 2.3. (see [23]) (1 
K L (b) = b w 1 λ and K R (b) = b wmλ .
Remark 2.5.

(1) By Assertion 4 of the theorem, the sequence (w 1 λ, . . . , w m λ) does not depend on the realization of the crystal B(λ). Nevertheless, the components b w k λ do and thus also the left and right Keys.

(2) Assume B 1 (λ) and B 2 (λ) are two realizations of the crystal B(λ) and φ : B 1 (λ) → B 2 (λ) the associated crystal isomorphism. Let K (1)
m and K

(2) m be the crystal embedding defined from B 1 (λ) and B(λ) as in [START_REF] Demazure | Une nouvelle formule des caractères[END_REF]. Since φ is a crystal isomorphism and

K (1) m , K (2) 
m are both crystal embeddings we have

K (2) m •φ = φ ⊗m •K (1) m
where φ ⊗m is defined on B 1 (λ) ⊗m by applying φ to each factors. In particular, for any b ∈ B 1 (λ) we have

(7) K L • φ(b) = φ • K L (b) and K R • φ(b) = φ • K R (b).
Following Kashiwara, let us now define for any µ ∈ W • λ, the set

B µ (λ) = {b ∈ B(λ) | K R (b) = b µ } We then have B(λ) = µ∈W •λ B µ (λ).
2.2. Crystals of Demazure modules. Let λ be a dominant weight and consider w ∈ W . Then, there exists (up to a constant) a unique highest weight vector v wλ in V (λ). The Demazure module associated to v wλ is the U + q (g)-module defined by D w (λ) := U + q (g) • v wλ . Demazure [START_REF] Demazure | Une nouvelle formule des caractères[END_REF] introduced the character s w λ of D w (λ) and shows that it can be computed by applying to e λ a sequence of divided difference operators given by any decomposition of w. More precisely, define for any i ∈ I the operator D i on Z[P ] by

D i (X) = X -e -α i (s i • X) 1 -e -α i . Consider a reduced decomposition w = s i 1 • • • s i ℓ of w. Then, Demazure proved that D w = D i 1 • • • D i ℓ depends
only on w and not on the reduced decomposition considered. Then s w λ = D w (e λ ) ∈ Z[P ] is the Demazure character. Later Kashiwara [START_REF] Kashiwara | Crystal base and Littelmann's refined Demazure character formula[END_REF] and Littelmann [START_REF] Littelmann | A Littlewood-Richardson type rule for symmetrizable Kac-Moody algebras[END_REF] defined a relevant notion of crystals for the Demazure modules. To do this, consider for any w ∈ W , the set

B wλ (λ) = {b ∈ B(λ) | K R (b) = b wλ }.
By definition we have B wλ (λ) = B w ′ λ (λ) when w and w ′ belong to the same left coset of W/W λ . We also get

B(λ) = wλ∈W λ B wλ (λ).
Definition 2.6. The Demazure crystal B w (λ) is defined by

(8) B w (λ) = w ′ w B w ′ λ (λ).
By writing w = uv with u ∈ W λ and v ∈ W λ , we get B w (λ) = B u (λ) from the characterization of the strong Bruhat order recalled in §2.1.1. Thus we can and shall assume that both w and w ′ belong to W λ in [START_REF] Fayers | Core blocks of Ariki-Koike algebras[END_REF]. The following Theorem has been established by Kashiwara and Littelmann.

Theorem 2.7. Assume λ is a dominant weight.

(1) We have s w λ = b∈Bw(λ) e wt(b) . (2) For any reduced decomposition

s i 1 • • • s i ℓ of w, we have B w (λ) := { f k 1 i 1 • • • f k ℓ i ℓ (b λ ) | (k 1 , . . . , k ℓ ) ∈ Z ℓ ≥0 }. It is also interesting to define B w (∞) = lim λ→+∞ B w (λ) := { f k 1 i 1 • • • f k ℓ i ℓ (b ∅ ) | (k 1 , . . . , k ℓ ) ∈ Z ℓ ≥0 }.
Thus, from the above result, we deduce that to compute the Demazure crystal B w (λ), it suffices to • compute the Key map K R on B(λ).

• compute the strong Bruhat order on W λ , or alternatively on the vertices of O(λ).

Recursive computations of the Keys and the strong Bruhat order

We shall describe in this section procedures for computing the Keys using combinatorial R-matrices and the strong Bruhat order on the orbit of the highest weight vertex. [START_REF] Kamnitzer | A definition of the crystal commutator using Kashiwara's involution[END_REF] for the description of such an isomorphism in the Kac-Moody case). Nevertheless, each such isomorphism sends B λ,µ (λ + µ) on B µ,λ (λ + µ) for there is only one connected component in B(λ) ⊗ B(µ) and B(µ) ⊗ B(λ) of highest weight λ + µ that we call principal. We shall write R the unique isomorphism from

(λ) ⊗ B(µ) to B(µ) ⊗ B(λ) (see
B λ,µ (λ + µ) to B µ,λ (λ + µ). Also recall that O λ,µ (λ + µ) is the orbit of b λ ⊗ b µ in B(λ) ⊗ B(µ) under the action of W .
Given two crystals B 1 and B 2 the flip F is the bijection from

B 1 ⊗ B 2 to B 2 ⊗ B 1 defined by F(u ⊗ v) = v ⊗ u for any u ⊗ v in B 1 ⊗ B 2 . This is not a crystal isomorphism in general.
The previous definitions of B λ,µ (µ + λ), O λ,µ (λ + µ) etc. extend naturally to the case where a sequence λ (1) , . . . , λ (m) of dominant weights is considered (rather than just two dominant weights). Let us start with the easy following lemma.

Lemma 3.1. Consider w • b λ (1) ⊗ • • • ⊗ b λ (m) ∈ O λ (1) ,...,λ (m) (λ (1) + • • • + λ (m) ). Then we have w • b λ (1) ⊗ • • • ⊗ b λ (m) = b wλ (1) ⊗ • • • ⊗ b wλ (m) .
Moreover, for any i ∈ I and any k = 1, . . . , m we have

ε i (b w•λ (k) ) = 0 when ℓ(s i w) = ℓ(w) + 1, ϕ i (b w•λ (k) ) = 0 when ℓ(s i w) = ℓ(w) -1.
Proof. This follows from [START_REF] Bump | Crystal bases representations and combinatorics[END_REF], the definition of the action of the generators s i and an easy induction on the length of w.

Now, consider w • b λ,µ ∈ O λ,µ (λ + µ) ⊂ B(λ) ⊗ B(µ). Lemma 3.2. Assume w ∈ W . Then, we have w • b λ,µ = b p λ (w)λ ⊗ b pµ(w)µ .
Proof. We can assume that w ∈ W λ+µ and set w

• b λ,µ = b 1 ⊗ b 2 . By Lemma 3.1, we know that b 1 ∈ O λ (b λ ) and b 2 ∈ O µ (b µ ). Thus we can set w • b λ,µ = b w L λ ⊗ b w R λ with (w L , w R ) ∈ W λ × W µ . Moreover, if we fix a reduced expression of w = s i 1 • • • s im ∈ W λ+µ , we get a directed path π w (λ,µ) in O λ,µ (λ + µ) from b λ,µ
to b obtained by applying crystals operators fi , i ∈ I. By using the tensor product rules (4) for these operators, this thus yields also a directed path

π w L λ in O λ (b λ ) from b λ to b w L λ and a directed path π w R µ in O µ (b µ ) from b µ to b w R µ .
The equivalence between directed paths and elements in W λ and W µ (see §2.1.3) then imposes that we have (w

L , w R ) = (p λ (w), p µ (w)). Consider b = u ⊗ v in B λ,µ (λ + µ) and set K L (b) = u L ⊗ v L , K R (b) = u R ⊗ v R . Lemma 3.3. We have u L = K L (u) and v R = K R (v).
Proof. For m with sufficiently many factors, we get by definition of K L (b) and K R (b)

(9) K m (b) = K L (b) ⊗ • • • ⊗ K R (b)
where K m is the crystal embedding from B(b λ,µ ) in B(b ⊗m λ,µ ) defined in [START_REF] Demazure | Une nouvelle formule des caractères[END_REF]. ). Since m can be any integer with sufficiently many factors, one can choose such a integer m so that (9) holds and simultaneously 

K ′ m (b) = K m (u) ⊗ K m (v) = K L (u) ⊗ • • • ⊗ K R (u) ⊗ K L (v) ⊗ • • • ⊗ K R (v) where K ′ m = I • K m by Lemma 2.
(b) = w • F (b p λ (u)λ ⊗ b pµ(u)µ ) = w(b pµ(u)µ ⊗ b p λ (u)λ ) = wu(b µ ⊗ b λ ) = b pµ(wu)µ ⊗ b p λ (wu)λ . Therefore, we have w • F (b) = F • w(b) as desired. Corollary 3.5. The maps R and F coincide on O λ,µ (λ + µ). Proof. Consider b = w • b λ,µ in O λ,µ (λ + µ). On the one hand side, we have R(w • b λ,µ ) = w • R(b λ,µ ) = w • b µ,λ because R
= u ⊗ v in B λ,µ (λ + µ), set R(b) = b = v ⊗ u in B µ,λ (λ + µ).
Theorem 3.6. We have

K L (b) = K L (u) ⊗ K L ( v) and K R (b) = K R ( u) ⊗ K R (v).
Proof. We prove the first equality, the arguments being similar for the second one. Write [START_REF] Deodhar | Some characterization of the Bruhat order on a Coxeter group[END_REF]. By Corollary 3.5 and once again, Lemma 3.3 we deduce the equality

K L (b) = u L ⊗ v L . By Lemma 3.3, we first get that u L = K L (u). We also have K L (R(b)) = R(K L (b)) because R is a crystal isomorphism as in
K L (R(b)) = K L ( v ⊗ u) = K L ( v) ⊗ u L = R(K L (b)) = R(K L (u) ⊗ v L ) = v L ⊗ K L (u). Thus, v L = K L ( v) as desired.
Now consider S = (λ (1) , . . . , λ (l) ) a sequence of dominant weights and write λ = λ (1) 

+ • • • + λ (l) . Let B S (λ) be the unique connected component in l k=1 B(λ (k) ) of highest weight λ. Its highest weight vertex is b S = b λ (1) ⊗ • • • ⊗ b λ (l) . For any k = 1, . . . , l, denote by θ L k the unique crystal isomorphism from B S (λ) to B S (k) L (λ) where S (k) L = (λ (k) , λ (1) , . . . , λ (l) ) (in particular S (1) L = S). Write similarly θ R k the unique crystal isomorphism from B S (λ) to B S (k) R (λ) where S (k) R = (λ (1) , . . . , λ (l) , λ (k) ) (in particular S (l) R = S) For any b = b 1 ⊗ • • • ⊗ b l in B S (λ), set θ L k (b) = b L 1 (k) ⊗ • • • ⊗ b L l (k) and θ R k (b) = b R 1 (k) ⊗ • • • ⊗ b R l (k). In particular b L 1 (k) ∈ B(λ (k) ) and b R l (k) ∈ B(λ (k)
) for any k = 1, . . . , l. An easy induction yields the following corollary of Theorem 3.6.

Corollary 3.7. For any b ∈ B S (λ), we have

K L (b) = l k=1 K L (b L 1 (k)) and K R (b) = l k=1 K R (b R l (k)).
Remark 3.8. The previous corollary reduces the computation of the Keys for a dominant weight λ to that of R-matrices and Keys for dominant weights less that λ for the order ≺ on P + . For finite types and for affine type A, we shall see that this gives an efficient procedure by decomposing λ on the basis of fundamental weights.

3.3.

Recursive computation of the strong Bruhat order. We resume the notation of the previous § of this section. In §2.1.3, we have also seen that the elements of W λ+µ are matched with the vertices of O λ,µ (λ+µ).

Proposition 3.9. Consider w • b λ,µ and w ′ • b λ,µ in O λ,µ (λ + µ) ⊂ B(λ) ⊗ B(µ) with w and w ′ in W λ+µ . Then w • b λ,µ = b p λ (w)λ ⊗ b pµ(w)µ and w ′ • b λ,µ = b p λ (w ′ )λ ⊗ b pµ(w ′ )µ .
Moreover w w ′ if and only if p λ (w) p λ (w ′ ) and p µ (w) p µ (w ′ ).

Proof. The first statement of the proposition comes by applying Lemma 3.2 to w and w ′ and the second one is Lemma 2.1. Now, consider S = (λ (1) , . . . , λ (l) ) a sequence of dominant weights and write O S (λ) for the orbit of b S in B S (λ). Proposition 3.9 and an easy induction yields the following corollary which permits a recursive computation of the strong Bruhat order. It will be of particular interest in the following sections when the λ (k) , k = 1, . . . , l are fundamental weights and the crystal B(λ) has a convenient realization in terms of tableaux or abaci.

Corollary 3.10.

(1) For any b

1 ⊗ • • • ⊗ b l = w • b S ∈ O S (λ) with w ∈ W λ (1) +•••+λ (l)
, there exists a unique l-tuple (w 1 , . . . , w l )

∈ l k=1 W λ (k) such that b k = w k • b λ (k) for any k = 1, . . . , l. (2) We have w k = p λ (k) (w). (3) Given w • b S ∈ O S (λ) and w ′ • b S ∈ O S (λ) with w, w ′ ∈ W λ (1) +•••+λ (l)
, we have w w ′ if and only if w k w ′ k for any k = 1, . . . , l.

Determination of the Demazure crystals by Keys in finite types

By Theorems 2.7 and 3.6, given any dominant weight λ expressed as a sum of fundamental weights, we can conveniently compute the Demazure crystals B w (λ) as soon as we have efficient procedures for

• computing the combinatorial R-matrix (or at least its restriction to the principal connected components) on tensor product of fundamental crystals (i.e. crystal with fundamental highest weights), • computing the Key for fundamental crystals,

• computing the strong Bruhat order on W λ .

4.1.

The finite type A. We start by recalling the results of Lascoux and Schützenberger [START_REF] Lascoux | and Keys and standard bases[END_REF]. In type A n , the crystal B(ω i ), i = 1, . . . , n is conveniently realized as the set of columns of height i on {1 < • • • < n < n + 1}. Then the dominant weight ω i is minuscule which implies that K L (C) = K R (C) for any column C ∈ B(ω i ). Also the combinatorial R-matrices can be computed by using the Jeu de Taquin procedure or the insertion scheme on semistandard tableaux. More generally given a sequence S = (ω i 1 , . . . , ω i l ) of dominant weights such that i 1 ≥ • • • ≥ i l , the vertices of the crystal B S (λ) with λ = ω i 1 + • • • + ω i l defined in § 3.1 can be identified with the semistandard tableaux of shape λ (see [START_REF] Kashiwara | On crystal bases, Representations of groups[END_REF] and the example below). The highest weight tableau is the tableau T (λ) of shape λ with entries i in row i for any i = 1, . . . , n. The elements of the orbit O S (λ) of T (λ) are the semistandard tableaux

T = C 1 ⊗ • • • ⊗ C l of shape λ verifying the chain of inclusions C l ⊂ • • • ⊂ C 2 ⊂ C 1 . Also for two such tableaux T = C 1 ⊗ • • • ⊗ C l and T ′ = C ′ 1 ⊗ • • • ⊗ C ′ l with T = w • T (λ) and T = w ′ • T (λ) and (w, w ′ ) ∈ (W λ ) 2 , we have w w ′ if and only if C k C ′
k is a semistandard tableau for any k = 1, . . . , l. This is a direct consequence of 3.10. Equivalently one gets that the Strong Bruhat order on W λ is just the product of the strong Bruhat orders on the cosets W ω i , i = 1, . . . , l. We shall describe it for type C n and let to the reader its adaptation to types B n and D n . For a review on the combinatorics of crystals in classical types we refer to [START_REF] Lecouvey | Combinatorics of crystal graph for the root systems of type An[END_REF]. There exists a convenient notion of symplectic tableaux compatible with crystal basis theory [START_REF] Kashiwara | Crystals for the representations of the q-analogues of classical Lie algebras[END_REF]. In type C n , the dominant weights can be identified with partitions exactly as in type

A n . A tableau T = C 1 • • • C l of type C n and shape a partition λ is a filling of the Young diagram λ by letters of {1 < • • • < n < n < • • • < 1} such that each column C l is
admissible and the split form of T is semistandard. A column C is admissible when it can be split in a pair (lC, rC) of columns contained no pair of letters (z, z) with z ∈ {1, . . . , n} by using the following procedure. Let I = {z 1 > • • • > z r } the set of unbarred letters z such that the pair (z, z) occurs in C. The column C can be split when there exists (see the example below) a set J = {t 1 > • • • > t r } ⊂ {1, . . . n} such that:

• t 1 is the greatest letter of {1, . . . n} satisfying: t 1 < z 1 , t 1 / ∈ C and t 1 / ∈ C, • for i = 2, ..., r, t i is the greatest letter of {1, . . . n} satisfying: t i < min(t i-1, z i ), t i / ∈ C and t i / ∈ C. In this case write: rC for the column obtained by changing in C, z i into t i for each letter z i ∈ I and by reordering if necessary, lC for the column obtained by changing in C, z i into t i for each letter z i ∈ I and by reordering if necessary. Admissible columns with i boxes label the vertices of B(ω i ). Moreover for any C in B(ω i ), we have C L = lC and C R = rC, that is the previous procedure give the left and right Keys of a column. Now T is a tableau of type C n when its split form spl(T ) = lC 1 rC 1 • • • lC l rC l is semistandard.

As in type A, on associates to the sequence S = (ω i 1 , . . . , ω i l ) of dominant weights such that i ≥

• • • ≥ i l the crystal B S (λ) with λ = ω i 1 + • • • + ω i l .
Its vertices then coincide with the tableaux of type C n and shape λ. The R-matrix B (ω i ,ω j ) (ω i + ω j ) → B (ω j ,ω i ) (ω i + ω j ) can be computed by using Sheats symplectic Jeu de Taquin (which does not coincide with the restriction of the usual Jeu de Taquin on symplectic tableaux) or the bumping procedure on symplectic tableaux. The vertices in O S (λ) are the tableaux of type C n of the form We have 4.2.2. Exceptional types. For exceptional types, the Key in fundamental crystals can yet be computed from the dilatation maps K m defined in [START_REF] Demazure | Une nouvelle formule des caractères[END_REF] with m ≤ 4 (see [START_REF] Littelmann | Crystal graphs and Young tableaux[END_REF]). There is also relevant notions of tableaux (see [START_REF] Bump | Crystal bases representations and combinatorics[END_REF] and the references therein). Nevertheless, the combinatorial R-matrices for fundamental crystals, the orbit of the highest weight vertex in the crystals and the strong Bruhat order on this orbit become more complex to compute beyond type G 2 (for which the model remains simple and there is a bumping algorithm (see [START_REF] Lecouvey | Combinatorics of crystal graph for the root systems of type An[END_REF])).

T = C 1 • • • C l where C l ⊂ • • • ⊂ C 1 and
R (ω 4 ,ω 3 ) (T ) =

Determination of the Demazure crystals by Keys in affine type A

In this section we assume g = sl e is the affine Lie algebra of type A

(1) e-1 . A sequence s = (s 1 , . . . , s l ) ∈ Z l is called a multicharge. It defines the dominant weight Λ s = l i=1 ω s i mod e of level l where ω 0 , . . . , ω e-1 are the fundamental weights of sl e . 5.1. The level 1. We now review a convenient realization of the crystals B(ω i ), i = 0, . . . , e-1 by abaci. Recall that a partition is a nonincreasing sequence λ = (λ 1 ≥ • • • ≥ λ m ) of nonnegative integers. One can assume this sequence is infinite by adding parts equal to zero. Each partition will be identified with its Young diagram. To each box (also called node) b of a partition λ, one associates its content c(b) = vu where u and v are such that b belongs to the u-th row and the v-th column of λ, respectively. A partition is completely determined by its beta numbers. These are the contents of its extended rim obtained by adding one box to the right end of each row. The removable nodes of λ are the nodes located at the ends of its rows which yet yield a partition when they are removed from λ. The addable nodes of λ are the nodes in its extended rim which yield a partition when they are added to λ. Now fix s ∈ Z. The symbol of λ, denoted by S s (λ) is the list of its beta numbers translated by s. Alternatively, one can consider the abacus L s (λ) which is obtained by decorating Z with black and white beads such that the black beads corresponds to the integers in S s (λ). Since λ is assumed to have an infinite number of zero parts, both S s (λ) and L s (λ) are infinite. Nevertheless, only the nonzero parts of λ are relevant which is easy to make apparent when S s (λ) and L s (λ) are pictured (see the following example). An addable node in λ corresponds in L s (λ) to a black bead with a white bead at its right whereas a removable node corresponds to a black bead with a white bead at its left.

The set of symbols can be endowed with the structure of a type A

e-1 -crystal. For any i ∈ {0, . . . e -1}, the i-nodes of λ are those of content x = i mod e. Let w i be the word on the alphabet {A, R} obtained by reading from right to left the entries x of S s (λ) such that x = i mod e or x = i + 1 mod e corresponding to addable or removable i-nodes in λ. We shall say that w i is the {A, R}-word of λ. Delete recursively each factor RA until obtain a reduced word of the form w i = A a R r . Then fi (S s (λ)) is obtained by changing in S s (λ) the rightmost entry x appearing in w i into x + 1 if a > 0 and is zero otherwise. Is is easy to check that S s (∅) is then a source vertex. In fact the connected component B s (∅) of S s (∅) is isomorphic to the sl e -crystal B(ω s mod e ) (see for example [START_REF] Geck | Representations of Hecke algebras at roots of unity[END_REF] Chapter 6 and the references therein). Also one can prove that the vertices in B s (∅) are the symbols S s (λ) corresponding to e-regular partitions, that is to partitions with no part repeated strictly more than e -1 times. Alternatively, λ is e-regular if there is no sequence of e black beads in L s (λ).

Observe that when e tends to infinity, the previous construction yields the crystal B ∞ s (S s (∅)) which is isomorphic to the sl ∞ -crystal with highest weight the s-th fundamental weight. Also, up to rotation, the symbol S s (λ) is nothing but the half-infinite column semistandard tableau on Z which is the natural type A ∞ -extension of the finite columns used in §4.1. A partition λ is called a e-core if it does not contain a node with hook length e. There are alternative characterizations of the e-core (see for example [START_REF] Lascoux | Ordering the symmetric group, Algebraic combinatorics and applications[END_REF]) of the partition λ.

Proposition 5.2. The following assertions are equivalent:

(1) λ is a e-core, (2) λ does not contains any node with hook length e, (3) for any i = 0, . . . , e -1, w i contains only nodes A or only nodes R, (4) for any x in S e (λ), xe also belongs to S e (λ), [START_REF] Bump | Crystal bases representations and combinatorics[END_REF] we have L t (λ) ⊂ L t+e for any t ∈ Z.

Given two partitions λ and µ, we write λ ⊆ µ when the Young diagram of λ is contained in that of µ. This defines the inclusion order on partitions.

Corollary 5.3. The orbit O s (∅) of ∅ in B s (∅) under the action of the Weyl group W contains exactly the e-cores. Moreover, under this correspondence, the strong Bruhat order on W ωs coincides with the inclusion order on partitions.

In the following paragraph, we will see how generalize these two last results in highest level. Now let us recall a combinatorial procedure described in [START_REF] Ariki | On the product of two basic representations of Uv( sle)[END_REF] yielding the right Key K R s (λ) of S s (λ) in B s (∅). 3 First set U (S(λ)) = {x ∈ S(λ) | xe / ∈ S(λ)}. Then K R s (λ) can be computed by the following algorithm:

(1) If U (S(λ)) = ∅, then K R s (λ) = S s (λ) (2) Else let p = max{x ∈ S(λ) | x -e /
∈ S(λ)} and q = min{x > p | x / ∈ S(λ), xe ∈ S(λ), x = p mod e}. Replace S(λ) by S(λ)\{p} ∪ {q} and return to step 1. Observe the algorithm is well-defined for the set {x > p | x / ∈ S(λ), xe ∈ S(λ), x = p mod e} is not empty. Also it terminates since the cardinality of U (S(λ)) decreases after sufficiently iterations. Then we get p = 1 and q = 8. Only one iteration is needed and this gives

K R s (λ) = • • • -5 -4 -1 2 5 8
which is the symbol of the 3-core µ = (8, 6, 4, 2).

5.2. Higher level.

5.2.1.

Uglov realization. Let s = (s 1 , . . . , s l ) ∈ Z l be an arbitrary multicharge. We now recall Uglov's realization of the crystal B(Λ s ). Its is quite similar to the level 1 case except one has to consider l-partitions λ = (λ 1 , . . . , λ l ) (i.e. sequences of partitions of length l) instead of partitions. To the l-partition λ is associated its symbol which is the sequence S s (λ) = (S s l (λ l ), . . . , S s 1 (λ 1 )) of the the symbols associated to each pair (s k , λ k ). The abacus L s (λ) = (L s l (λ l ), . . . , L s 1 (λ 1 )) is defined similarly.

Example 5.5. The abacus of the 3-partition (1.1, 2.2.2.1, 9) with s = (4, 6, 1) is

The set of symbols so obtained is also endowed with the structures of sl ∞ and sl e -crystals of level l. Nevertheless the sl e -crystal structure is not a tensor product of level 1 crystals when l > 1. Thus, we cannot apply directly to the results of Section 3. We shall see in § 5.6 that there is another (closed) construction of level l sl e -crystals (called the Kleshchev realization) which is by definition a tensor product of level 1 affine crystals. We shall consider both in the sequel notably because Uglov's version is easier to connect to the combinatorics of non affine type A and the two versions are of common use in the literature.

First of all, to get the sl ∞ -structure, consider j ∈ Z and W j the word on the alphabet {A, R} obtained by reading from right to left and successively in L s l (λ l ), . . . , L s 1 (λ 1 ), the entries j or j +1 corresponding to addable or removable nodes. Delete recursively each factor RA in W j until get a reduced word of the form W j = A a R r . Then F j (S s (λ)) is obtained by changing in S s (λ) the rightmost j appearing in W j into j + 1 if a > 0 and is zero otherwise. It is easy to check that S s (∅) is then a source vertex of highest weight Λ ∞ s , thus its associated connected component B ∞ (S s (∅)) is isomorphic to B(Λ ∞ s ). Now, to define the sl e -structure, consider i ∈ {0, . . . e -1} and the word [START_REF] Geck | Representations of Hecke algebras at roots of unity[END_REF] → S s (µ) in B ∞ (S s (∅)) with j = i mod e where W j is the factor of w i modified in [START_REF] Geck | Representations of Hecke algebras at roots of unity[END_REF] when fi is applied to S s (λ).

w i = +∞ p=-∞ W i+pe . Define w i = A a R

5.3.

Orbit of the highest weight vertex. Let s = (s 1 , . . . , s l ) ∈ Z l be an arbitrary multicharge and e ∈ Z >0 . We now give a characterization of the l-partitions in the orbit O(s, e) of S s (∅) modulo the action of the affine Weyl group similar to Corollary 5.3. To an l-partition λ, we attach its abacus (which depends on s). Recall that L s (λ) = (L s l (λ l ), . . . , L s 1 (λ 1 )) is the abacus of λ. For two runners L s (λ) and L t (µ) in one abacus, write L s (λ) ⊂ L t (µ) when for each black bead in the runner L s (λ), there is a black bead at the same position in the runner L t (µ). Alternatively, let S s (λ) and S t (µ) be the symbols corresponding to these two runners. We have L s (λ) ⊂ L t (µ) if and only if S s (λ) is contained in S t (µ). Note that for all k ∈ Z, we have L s (λ) ⊂ L t (µ) if and only if L s+k (λ) ⊂ L t+k (µ). By a slight abuse of notation, we shall say that x is in the abacus L s (λ) if and only if there is a black bead in position x in one of its runner (equivalently, x appears in a row of S s (λ)).

For any partition µ and any s ∈ Z, the abacus L -s (µ t ) of the transpose partition µ t is obtained from L s (µ) by switching the black and white beads and performing a mirror image. Observe also that λ is an e-core if and only if λ t is. This is easy to see on the abacus where it suffices to check that for all black bead in position x , there is a black bead in position xe.

Example 5.6. Compare below the abaci of the partitions (5, 3, 1) with charge 2 and (3.2.2.1.1) with charge -2.

Assume l > 1 and s = (s 1 , . . . , s l ). For any 1 ≤ a < b < l, let s ′ a and s ′ b be integers such that

s a = s ′ a + p a e, s b = s ′ b + p b e with (p a , p b ) ∈ Z 2 and 0 ≤ s ′ a -s ′ b < e. When l = 1, we set s ′ 1 = s 1 for completeness. Note that s ′
a and s ′ b are in fact defined modulo translation by the same multiple of e (one can see that that such a translation does not affect the definition below ). Definition 5.7. We say that the l-partition λ is a (e, s)-core if it satisfies on of the following properties:

(1) l = 1 and

L s ′ 1 (λ 1 ) ⊂ L s ′ 1 +e (λ 1 ) (2) l > 1 and L s ′ a (λ a ) ⊂ L s ′ b (λ b ) ⊂ L s ′ a +e (λ a )
for any 1 ≤ a < b < l. We denote by L(e, s) the set of all (e, s)-cores. Remark 5.8.

(

) The condition L s ′ a (λ a ) ⊂ L s ′ a +e (λ b ) means that for each x in L s ′ a (λ a ), 1 
xe also belongs to L s ′ a (λ a ) (since x ∈ L s ′ a +e (λ a )). Thus, in the (e, s)-core λ, each λ a is a core.

(2) When l > 1 and s = (s 1 , . . . , s l ) is such that 0 ≤ s 1 ≤ • • • ≤ s l < e, then λ is a (e, s)-core if and only if for any 1 ≤ a ≤ l, λ a is a e-core and for any 1

≤ a < l -1, L sa (λ a ) ⊂ L s a+1 (λ b ) ⊂ L sa+e (λ a ).
Example 5.9. Assume e = 3 and s = (0, 1, 1), then the 3-partition (1, 3.1, 3.1) is in L(e, s).

Example 5.10. Take e = 3 and s = (0, 1). The following are the 2-partitions of rank less than 3 in L(a, s):

The empty bipartition (∅, ∅), with abacus:

The bipartition (∅, 1), with abacus:

The bipartition (1, ∅), with abacus:

The bipartition (1.1, ∅), with abacus:

The bipartition (∅, 2), with abacus:

The bipartition (1, 1.1), with abacus:

The bipartition (2, 1), with abacus:

Given two multicharges s and s ′ in Z l , we have Λ s = Λ s ′ if and only if s mod e and s ′ mod e coincide up to permutation of their components. Then the crystals B(S s (∅)) and B(S s ′ (∅)) are isomorphic. In [START_REF] Jacon | Crystal isomorphisms for irreducible highest weight Uv( sle)-modules of higher level[END_REF], we establish that the associated isomorphism Φ e s→s ′ can always be obtained by composing two types of elementary isomorphisms. The first one is denoted by Φ e s→(k,k+1)•s and corresponds to the permutation of s k and s k+1 in s. It is just the restriction to the affine crystals of the combinatorial R-matrix Φ e s→(k,k+1)•s (which can be computed by usual Jeu de Taquin operations). The second one is denoted Φ e s→τ •s where τ •s = (s 2 , . . . , s l , s 1 +e) and sends the symbol S s (λ) on S τ •s (µ) where µ = (λ 2 , . . . , λ l , λ 1 ). Let us first prove our set L(e, s) is stable by these isomorphims.

Lemma 5.11. Let s ∈ Z l and k ∈ {1, . . . , l -2} be such that s k ≤ s k+1 then

(1) We have Φ e s→(k,k+1)•s (L(e, s)) = L(e, s) and for any (e, s)-core λ, we get Φ e s→(k,k+1)•s (λ) = (λ 1 , . . . , λ k+1 , λ k , . . . , λ l ). (2) We have Φ e s→τ •s (L(e, s)) = L(e, s) and for any (e, s)-core λ, we get Φ e s→τ •s (λ) = (λ 2 , . . . , λ l , λ 1 ). Proof. Let k ∈ {1, . . . , l-2} be such that s k ≤ s k+1 . We first show that if λ ∈ L(e, s), we have Φ e s→(k,k+1)•s (λ) = (λ 1 , . . . , λ k+1 , λ k , . . . , λ l ). Since the computation of Φ e s→σ k s reduces to Jeu de Taquin, the equality Φ e s→(k,k+1

)•s (λ) = (λ 1 , . . . , λ k+1 , λ k , . . . , λ l ) is equivalent to the condition L s k (λ k ) ⊂ L s k+1 (λ k+1 ). Let (s ′ k , s ′ k+1 ) ∈ Z 2 and (p k , p k+1 ) ∈ Z 2 be such that s k = s ′ k + p k e and s k+1 = s ′ k+1 + p k+1 e and 0 ≤ s ′ k+1 -s ′ k < e. By definition we have L s ′ k (λ k ) ⊂ L s ′ k+1 (λ k+1 ) ⊂ L s ′ k +e (λ k ). As s k ≤ s k+1 , we must have p k ≤ p k+1 . By hypoth- esis, we have L s ′ k +p k e (λ k ) ⊂ L s ′ k+1 +p k e (λ k+1 ). This gives L s ′ k +p k e (λ k ) ⊂ L s ′ k+1 +p k e (λ k+1 ) ⊂ L s ′ k+1 +p k+1 e (λ k+1 ) because λ k+1 is an e-core (see Assertion 5 of Proposition 5.2). Thus L s k (λ k ) ⊂ L s k+1 (λ k+1 ) as desired. We now show that Φ e s→(k,k+1)•s (λ) is a (e, (k, k + 1) • s)-core. So consider (h k , h k+1 ) ∈ Z 2 such that s k+1 = s ′′ k + h ′ k e and s k = s ′′
k+1 +h k+1 e where 0 ≤ s ′′ k+1 -s ′′ k < e. Keeping the above notation, we have that s ′′ k = s ′ k+1 and s ′′ k+1 = s ′ k +e (up to a translation by a the same integer). On the one hand, we have

L s ′ k+1 (λ k+1 ) ⊂ L s ′ k +e (λ k ) and thus L s ′′ k (λ k+1 ) ⊂ L s ′′ k+1 (λ k ). On the second hand, we have L s ′ k (λ k ) ⊂ L s ′ k+1 (λ k+1 ) and thus L s ′′ k+1 -e (λ k ) ⊂ L s ′′ k (λ k+1 ) or equivalently L s ′′ k+1 (λ k ) ⊂ L s ′′ k +e (λ k+1
). Finally, we get the inclusion Φ e s→(k,k+1)•s (L(e, s)) ⊂ L(e, s) and conclude that Φ e s→(k,k+1)•s (L(e, s)) = L(e, s) because Φ e s→(k,k+1)•s is a crystal isomorphism. This proves our first assertion. For the second one, we use that Φ e s→τ •s (λ) = (λ 2 , . . . , λ l , λ 1 ). We just need to show that this is a (e, τ.s)-core. To do this, take k ∈ {2, . . . , l}.

Let (s ′ 1 , s ′ k ) ∈ Z 2 and (p 1 , p k ) ∈ Z 2 be such that s 1 = s ′ 1 + p 1 e and s k = s ′ k + p k e and 0 ≤ s ′ k -s ′ 1 < e.
Then by definition we have 

L s ′ 1 (λ 1 ) ⊂ L s ′ k (λ k ) ⊂ L s ′ 1 +e (λ 1
(λ k ) ⊂ L s ′ 1 +e (λ 1 ) ⊂ L s ′ k +e (λ k
) which is clear from the above property. Again, we obtain that Φ e s→τ •s (L(e, s)) = L(e, s). Lemma 5.12. For any s ∈ Z l the empty l-partition is a (e, s)-core. Lemma 5.13. Let s ∈ Z l and assume that λ is a (e, s)-core. Then λ t := ((λ l ) t , . . . , (λ 1 ) t ) is a (e, (-s l , . . . , -s 1 ))core.

Proof. Assume that for any a = 1, . . . , l -1 and b > a we have 0 ≤ s bs a < e. Then for the multicharge t := (-s l , . . . , -s 1 ) we also have for any a = 1, . . . , l -1 and b > a the inequalities 0 ≤ t bt a < e. Our result then follows from the interpretation of the transposition on abaci (see Example 5.6).

We can now describe the orbit O(s, e) in the Uglov realization of the crystal B(Λ s ).

Proposition 5.14. Let s ∈ Z l . The l-partition λ yields a symbol in O(s, e) if and only it is a (e, s)-core. In particular, when l > 1 and 0 ≤ s 1 ≤ • • • ≤ s l < e, the symbols in O(s, e) are exactly those such that L sa (λ a ) ⊂ L s a+1 (λ b ) ⊂ L sa+e (λ a ) for any 1 ≤ a < l.

We shall first need the following lemma.

Lemma 5.15. Let s ∈ Z l and λ be a (e, s)-core. Assume that we have a removable j-node at the position x of the abacus S s (λ) (thus x ≡ j mod e). Then there is no addable j-node in λ.

Proof. Assume first l = 1. Since we have a removable node at position x, x lies in the abacus S s (λ) but not x -1. As a consequence, for all a ∈ Z >0 , x -1 + ae does not belong to S s (λ) which thus has no addable node greater than x. In addition, for all a ∈ Z >0 , the node xa.e is in the abacus and this implies that there is no addable node in the abacus. Now, assume l > 1 and x is a removable j-node on k-th runner of λ. When k = 1, we have Φ e s→τ •s (λ) = (λ 2 , . . . , λ l , λ 1 ) which is a (e, τ • s)-core by Lemma 5.11. Therefore, x is a removable j-node in the k -1-runner of Φ e s→σ i s (λ). Clearly, Φ e s→τ •s (λ) has no addable j-node if and only if this holds in λ. By repeating this argument we can restrict the proof to the case k = 1. First, by the same arguments as in the case l = 1, there is no addable j-node in L s ′ 1 (µ 1 ). The condition

L s ′ 1 (µ 1 ) ⊂ L s ′ b (λ b
) for any b = 2, . . . , l implies that the j-node x belongs to the b-th runner of L s (λ). If it is removable, we get as in the case l = 1 that there is no addable node in L s ′ b (λ b ) since λ b is an e-core. If not, there is no addable node in L s ′ b (λ b ) which is less than x because all the positions xa.e and x -1a.e with a > 0 are occupied. Also the condition L s b (λ b ) ⊂ L s 1 +e (λ 1 ) implies that there is no node x -1 + e in L s ′ b (λ b ). Otherwise x -1 would belong to L s ′ 1 (λ 1 ) and x could not be removable in L s ′ 1 (λ 1 ). Thus, there is also no addable j-node greater than x in L s ′ b (λ b ) for any b = 2, . . . , l. Finally we have showed there is no addable j-node in the runners L s ′ a (λ a ), a = 1, . . . , l. Since s a = s ′ a mod e for any a = 1, . . . , l, this is also true for the runners L sa (λ a ), a = 1, . . . , l.

Proof of Proposition 5.14. Let us prove first the inclusion L(e, s) ⊂ O(s, e). Consider λ ∈ L(e, s), we show that λ is in O(s, e) by induction on the rank n of λ. For n = 0, the result is true by Lemma 5.12.

Assume that n > 0. Then λ is non empty and there exists a removable node for λ. Let j be its residue. As λ has no addable j-node by Lemma 5.15, all the removable nodes with residue j are normal nodes. If we remove them, the resulting l-partition µ is clearly in L(e, s) and thus also in O(s, e) by induction. Then, adding to µ all the normal addable j-nodes gives λ which is thus in O(s, e).

To prove the inclusion L(e, s) ⊃ O(s, e), consider λ such that S s (λ) ∈ O(s, e). By [START_REF] Bump | Crystal bases representations and combinatorics[END_REF], there exists at least an integer j ∈ {1, . . . , e -1} such that λ contains only removable j-nodes. Then S s (µ) = s j • S s (λ) ∈ O(s, e) and by the induction hypothesis, µ ∈ L(e, s). Then adding to µ all its addable j-nodes gives the l-partition λ in L(e, s).

Example 5.16. Let us resume Example 5.10. Denote by {s 0 , s 1 , s 2 } the simple reflections of the affine Weyl group W 3 . We have: S (0,1) (∅, 1) = s 1 S (0,1) (∅, ∅), S (0,1) (1, ∅) = s 0 S (0,1) (∅, ∅), S (0,1) (1.1, ∅) = s 2 .s 0 S (0,1) (∅, ∅) S (0,1) (∅, 2) = s 2 s 1 S (0,1) (∅, ∅), S (0,1) (1, 1.1) = s 0 s 1 S (0,1) (∅, ∅), S (0,1) (2, 1) = s 1 s 0 S (0,1) (∅, ∅).

5.4.

More on (e, s)-cores. We here point an interesting property of the set of (e, s)-cores. Assume that s is an arbitrary multicharge. Following [START_REF] Fayers | Core blocks of Ariki-Koike algebras[END_REF], for any l-partition λ and for each pairs of integers (i, j) ∈ {0, . . . , e -1} × {1, . . . , l} set b s i,j (λ) := max(β ∈ S s j (λ j )|β ≡ i mod e). Now let s = ( s 1 , . . . , s l ) ∈ {0, 1, . . . , e -1} l be such that s ≡ s mod e. Proposition 5.17. For any λ ∈ O(s, e) and any i ∈ {0, 1, . . . , e -1} there exists an integer γ i such that b s i,j (λ) ∈ {γ i , γ i + e} for all j ∈ {1, . . . , l}.

Proof. Fix i ∈ {0, 1, . . . , e -1}. To prove the proposition, it suffices to show that for all (j, k) ∈ {1, . . . , l} 2 , we have that |b s i,j (λ)b s i,k (λ)| ∈ {0, e}. Assume first that s j ≤ s k . In this case, since λ ∈ O(s, e), we have L s j (λ j ) ⊂ L s k (λ k ) ⊂ L s j +e (λ j ) and this implies that b s i,k (λ)b s i,j (λ) ∈ {0, e}. If we have now s j ≥ s k , we thus have s j ≤ s k + e and we get L s j (λ j ) ⊂ L s k +e (λ k ) ⊂ L s j +e (λ j ). This implies now that b s i,j (λ)b s i,k (λ) ∈ {0, e} as desired.

It follows from the previous proposition and results in [START_REF] Fayers | Core blocks of Ariki-Koike algebras[END_REF]Th. 3.1] that the (e, s)-cores parametrize distinguished elements of certain remarkable blocks for Ariki-Koike algebras which may be seen as analogues of simple blocks for Iwahori-Hecke algebras. These elements give in fact analogues of the e-cores in the context of Ariki-Koike algebras, this will be developed in [START_REF] Jacon | Cores of Ariki-Koike algebras[END_REF]. 5.5. Strong Bruhat order on Keys. Consider S s (λ) ∈ O(s, e) and S s (µ) ∈ O(s, e). Let u and v be the elements in W Λs such that S s (λ) = u • S s (∅) and S s (µ) = v • S s (∅), respectively. Recall we have written ⊆ for the inclusion order on partitions. Since the higher level Uglov sl e -crystal structure on the set of symbols is not a tensor product of level 1 sl e -crystals, we cannot directly use the results of Section 3. Nevertheless, we can get the following description of the strong Bruhat order on O(s, e). Proposition 5.18. With the previous notation, we have u v if and only of λ k ⊆ µ k for any k = 1, . . . , l.

Proof. Recall that each symbol S s (ν) can be regarded as a vertex of the type A

e-1 and A ∞ crystals B(S s (∅)) and B ∞ (S s (∅)). Now consider the finite set S N s (ν) of symbols of l-partitions ν with rank less or equal to a fixed integer N ,. Then, there exists an integer m such the action of any simple reflection s i ∈ W e on S N s (ν) coincide with that of the permutation σ i := -m≤k≤m (i + ke, i + 1 + ke) ∈ S [-m,m] ⊂ W ∞ where S [-m,m] is the symmetric group on the integers between -m and m. More generally, the action of w ∈ W e with minimal decomposition w

= s i 1 • • • s ia , on S N s (ν) will coincide with that of w = σ i 1 • • • σ ia ∈ S [-m,m] and σ i 1 • • • σ ia
is also a minimal decomposition of w. By definition of the strong Bruhat order we have u v in W e if and only if u v in S [-m,m] . Therefore, we are reduced to the finite type A for which the strong Bruhat order of level l is the product of l strong Bruhat orders of level 1 as observed in §4.1. 5.6. Kleshchev realization and computation of the Keys. As we have explained in Section 3, the computation of the Keys for an element in B(Λ s ) can be reduced to the computation of the Keys for the crystals B(ω s j ) associated to the fundamental highest weights once the orbit of the highest weight vertex in B(Λ s ) and the combinatorial R-matrices between fundamental crystals can be described. However, to do this the crystal B(Λ s ) should be realized as a connected component in a tensor product of level 1 crystals. Unfortunately, this is not the case for the Uglov realization when e is finite. The realization relevant in order to use Corollary 3.7 is the Kleshchev one (see for example [10, §6.2.16]). The vertices of the associated crystal are called the Kleshchev multipartitions. They have, in principle, a non trivial inductive definition but an elementary characterization of them has been recently given in [START_REF] Jacon | Kleshchev multipartitions and extended Young diagrams[END_REF].

Fortunately, Uglov and Kleshchev realizations can be easily connected. In particular, one can deduce from the above results that the characterization of the multipartitions in the orbit of the empty multipartition are the same in Kleshchev and Uglov realizations.

Proposition 5.19. Let s ∈ Z l . In the Kleshchev realization of B(Λ s ), a l-partition λ yields a symbol in the orbit of the empty l-partition if and only it is a (e, s)-core. In particular, when l > 1 and 0 ≤ s 1 ≤ • • • ≤ s l < e, the symbols in this orbit are exactly those such that L sa (λ a ) ⊂ L s a+1 (λ b ) ⊂ L sa+e (λ a ) for any 1 ≤ a < l. 4Proof. Let n ∈ Z >0 . Take t = (t 1 , . . . , t l ) ∈ Z l such that t j ≡ s j (mod e) for all j = 1, . . . , l and such that t jt 1 ≥ n + e for all j = 2, . . . , l. By [10, §6.2.16], the subcrystals containing the multipartitions of rank less than n in the Kleshchev realization for the multicharge s and in the Uglov realization for the multicharge t coincide. Thus we can conclude by using the fact that t ′ = s ′ . Now the second crucial ingredient in our procedure for computing the key by reduction to the fundamental weights as prescribed by 3.7 is the combinatorial R-matrix associated to a pair of fundamental weights. It corresponds to a transposition (k, k + 1) in the multicharge s for the Kleshchev realization of crystals (the rank of the multipartitions being fixed). Since only the components k and k + 1 are affected by this R-matrix, we are reduced to the the case where s = (s 1 , s 2 ) and k

= 1. Let v = (v 1 , v 2 ) ∈ Z 2 be such that 0 ≤ v 1 ≤ v 2 <
e and v j ≡ s j (mod e) for j = 1, 2. Then the subcrystal containing the multipartitions of rank less than n in the Kleshchev realization for s = (s 1 , s 2 ) coincides with that in the Uglov realization for the multicharge v > := (v 1 , v 2 + ke) where k ∈ N is such that k.e > n + e. The desired R-matrix thus corresponds to a crystal isomorphism between the crystal associated to the multicharge v > and the crystal associated to the multicharge (v 2 , v 1 + ke). This isomorphism can be computed on the bipartition (λ 1 , λ 2 ) by composing the crystal isomorphisms described in §5.3 as follows.

(1) First apply the crystal isomorphism Φ e (v 1 ,v 2 +ke)→(v 2 +ke,v 1 +e) which exchanges the two components of the bipartition, that is exchanges the two rows in the symbols and next translates the bottom one by e.

(2) Apply the crystal isomorphism Φ e (v 2 +ke,v 1 +e)→(v 1 +e,v 2 +k.e) which reduces to a "Jeu de taquin" switching the lengths of the two rows in the symbols.

(3) Repeat the two previous steps 2k times to get the image of (λ 1 , λ 2 ) in the crystal with multicharge (v 1 + 2e, v 2 + k.e). (4) Finally, apply one more isomorphism Φ e (v 1 +2ke,v 2 +ke)→(v 2 +ke,v 1 +2ke+e) and use the fact that the isomorphism between the crystals with multicharge (v 2 + ke, v 1 + 2ke + e) in the Uglov realization and (s 2 , s 1 ) in the Kleshchev realization is trivial.

Remark 5.20. The crystal isomorphism between the Uglov and Kleshchev realizations of B(Λ s ) can also be obtained from the results in [START_REF] Jacon | Crystal isomorphisms for irreducible highest weight Uv( sle)-modules of higher level[END_REF] although it is not easy to make explicit. By 2 of Remark 2.5, we so obtain a characterization of the Demazure crystals in the Uglov realization. Nevertheless, we can just use the Kleshchev realization in which is the orbit of the highest weight and the relevant combinatorial R-matrices are easy to describe. 5.7. Generalization of the Young Lattice. When e = ∞, l = 1 and s = (0), the orbit O(s, e) coincides with the whole crystal B(S s (∅)). By forgetting the labels i of the arrows in B(S s (∅)), one then recovers the Young lattice Y of partitions which is strongly connected with the combinatorics of Schur functions. This lattice admits an interesting generalization Y e-1 where the ordinary partitions are replaced by the e-cores (or by the k bounded partitions with k = e -1) connected this times with the combinatorics of k-Schur functions (see [START_REF] Lam | k-Schur functions and affine Schubert calculus[END_REF]). The graph Y e-1 corresponds to the Hasse diagram of the orbit O(s, e) when l = 1 and s = (0) and we have an arrow λ → µ between the two e-cores λ and µ when µ is obtained by adding all the possible addable i-nodes in λ corresponding to a fixed i ∈ {0, . . . , e -1}. When l > 1, the notion of (e, s)-core yields generalizations of the graph Y e-1 whose structure is obtained similarly from the orbit O(s, e). It is a natural question to ask whether its combinatorial properties (for e finite or not) can also be encoded in the combinatorics of a distinguished basis in a polynomial algebra analogous to k-Schur functions in level 1.

6. Demazure crystals in B(∞) 6.1. Link with the Demazure crystals in B(λ). Consider g a Kac-Moody algebra and λ a dominant weight for g. We now explain how it is possible to characterize the elements of a Demazure crystal B(∞) w from the computation of keys in the crystals B(λ) w , λ ∈ P + . First recall that there exists a unique embedding From the previous considerations, for deciding if a vertex u belongs to B(∞) w , it suffices to have a realization of B(λ) and B(∞) satisfying the properties below.

• The embedding π λ is easy to describe.

• The actions of both the ordinary and * -crystal operators are explicit.

• For any u ∈ Im π λ , one can compute the unique vertex b ∈ B(λ) such that π λ (b) = u.

• One can decide if a vertex b in B(λ) belongs to B(λ) w .

For deciding wether u ∈ B(∞) w it then suffices to proceed as follows.

(1) Compute λ = ε * (u), we get that u ∈ Im π λ .

( 

i

  → b ′ between two vertices b and b ′ in B(λ) if and only if b ′ = fi (b) or equivalently b = ẽi (b ′ ). We have fi (b) = 0 (resp. ẽi (b) = 0) when no arrow i starts from b (resp. ends at b). There is a unique vertex b λ in B(λ) such that ẽi (b λ ) = 0 for any i ∈ I called the highest weight vertex of B(λ) and we have wt(b λ ) = λ. Thus, for any b ∈ B(λ), there is a path b = fi 1 • • • fir (b λ ) from b λ to b. The weight function wt is such that wt(b) = λ -r k=1 α i k . For any i ∈ I, the crystal B(λ) decomposes into i-chains. For any vertex b ∈ B(λ), set ϕ i (b) = max{k | f k i (b) = 0} and ε i (b) = max{k | ẽk i (b) = 0}. We have wt( fi (b)) = wt(b)α i and s λ = b∈B(λ) e wt(b) . The Weyl group W acts on the vertices of B(λ): the action of the simple reflection s i on B(λ) sends each vertex b on the unique vertex b ′ in the i-chain of b such that ϕ i (b ′ ) = ε i (b) and ε i (b ′ ) = ϕ i (b) for any i ∈ I. This simply means that b and b ′ correspond by the reflection with respect to the center of the i-chain containing b. We shall write O(λ) = {w • b λ = b wλ | w ∈ W } for the orbit of the highest weight vertex of B(λ). Observe b wλ is then the unique vertex in B(λ) of weight wλ.

2. 1 . 4 .

 14 Dilatation of crystals. Consider a positive integer m and λ a dominant weight. There exists a unique embedding of crystals ψ m : B(λ) ֒→ B(mλ) such that for any vertex b ∈ B(λ) and any path b

  Consider λ and µ two dominant weights. Write b λ and b µ for the highest weight vertices of B(λ) and B(µ). Then B(b λ ⊗ b µ ) is a realization of the abstract crystal B(λ + µ) and we can define the m-dilatation K m : B(b λ ⊗ b µ ) ֒→ B(b ⊗m λ+µ ) as in (6). The following lemma shows there is another natural m-dilatation of B(b λ ⊗ b µ ) (see for example Corollary 2.1.3 in [28] for a proof).

) 2 )Definition 2 . 4 .

 224 For any w ∈ W, we have K m (b wλ ) = b ⊗m wλ . (Consider b ∈ B(λ). When m has sufficiently many factors, there exist elements w 1 , . . . , w m in W such that K m (b) = b w 1 λ ⊗ • • • ⊗ b wmλ . Moreover, in this case (a) up to repetition, the elements b w 1 λ and b wmλ in K m (b) do not then depend on m, (b) the sequence (w 1 λ, . . . , w m λ) in K m (b) does not depend on the realization of the crystal B(λ) and we have w 1 • • • w m . From Assertion 2 of the previous theorem, we can define the left and right Keys of an element in B(λ). Let b ∈ B(λ), then the left Key K L (b) of b and the right Key K R (b) of b are defined as follows:

3. 1 .

 1 Keys and combinatorial R-matrices. Consider λ, µ two dominant weights. Then B(λ)⊗B(µ) contains a unique connected component B λ,µ (λ + µ) isomorphic to the abstract crystal B(λ + µ) with highest weight vertex b λ,µ = b λ ⊗ b µ . Moreover, the crystals B(λ) ⊗ B(µ) and B(µ) ⊗ B(λ) are isomorphic. In general, there are fewer isomorphisms from B

  Now the crystals B(b ⊗m λ,µ ) and B(b ⊗m λ ⊗ b m µ ) are isomorphic for their highest weight vertices b ⊗m λ,µ = (b λ ⊗ b µ ) m and b ⊗m λ ⊗ b m µ have the same highest weight m(λ + µ). The isomorphism I from B(b ⊗m λ,µ ) and B(b ⊗m λ ⊗ b m µ ) and its converse I -1 are obtained by composing R-matrices whose actions on the previous highest weight vertices reduce to the flip of components b λ and b µ . In particular I and I -1 fix the leftmost and rightmost components in the vertices of B(b ⊗m λ,µ ) and B(b ⊗m λ ⊗ b m µ

  2. Since I -1 fixes the leftmost and rightmost components in K ′ m (b) we are done. Now we can show that the action of W commutes with the flip F on the orbit O λ,µ (λ + µ). Proposition 3.4. For any w ∈ W and any vertex b ∈ O λ,µ (λ + µ), we have w • F (b) = F • w(b). Proof. Write b = u(b λ ⊗ b µ ). One the one hand , Lemma 3.2 gives w(b) = wu(b λ ⊗ b µ ) = b p λ (wu)λ ⊗ b pµ(wu)µ and thus F • w(b) = b pµ(wu)µ ⊗ b p λ (wu)µ . On the other hand, we get w • F

  is a crystal isomorphism (and thus commutes with the action of W ) and R(b λ,µ ) = b µ,λ . On the other side we get F(w • b λ,µ ) = w • F(b λ,µ ) = w • b µ,λ by using the previous proposition and the equality F(b λ,µ ) = b µ,λ . 3.2. Reduction to smaller dominant weights. Denote by ≺ the partial dominant order on P + such that µ λ if and only if λµ ∈ P + and resume the notation of §3.1. Our aim is now to compute the left and right Keys of any vertex in B λ,µ (λ + µ) as a tensor product of Keys in B(λ) and B(µ). For any b

Example 4 . 1 .. 4 . 2 . 4 . 2 . 1 .

 4142421 Let us compute the Key of the tableau corresponding to v = (3, 3, 2). By using the Jeu de Taquin procedure, we get for the associated generalized tableaux of shape (3, 2, 3) and (2, 3Other finite types. Classical types. Thanks to Corollary 3.7 the computation of the Keys in types B n , C n and D n becomes very closed to that in type A n .

  no pair of letters (z, z) in each column C k . As in type A, for T = w •T (λ) and T = w ′ • T (λ) and (w, w ′ ) ∈ (W λ ) 2 , we have w w ′ if and only if C k C ′ k is a semistandard tableau for any k = 1, . . . , l. Example 4.2. Let us assume n = 4 and compute the right Key of the tableau

Example 5 . 1 . 5

 515 Consider the 3-regular partition λ = (5, 3, 3, 2). Its beta numbers are easily deduced from its Young diagram S 0 (λ) = • • • -5 -4 -1 1 2 The abacus L 0 (λ) is : Recall that the hook length h(b) of a node b in the partition λ (i.e. a box in its Young diagram) is the number of nodes located to the right or below b (weakly speaking, thus b contributes to h(b)).

Example 5 . 4 .

 54 Assume e = 3 and S 0 (λ) = • • • -5 -4 -1 1 2 5

Proof.

  Assume that for s ∈ Z l and a = 1, . . . , l -1, b > a we have 0 ≤ s bs a < e, then it is clear that L sa (∅) ⊂ L s b (∅) ⊂ L sa+e (∅). Now let us consider any s ∈ Z l . Let a = 1, . . . , l -1 and let b > a. Write as in the definition, s a = s ′ a + p a e and s b = s ′ b + p b e with (p a , p b ) ∈ Z 2 such that 0 ≤ s ′ bs ′ a < e. Then we have that L s ′ a (∅) ⊂ L s ′ b (∅) ⊂ L s ′ b +e (∅) by the previous case. The result follows.

  π λ : B(λ) ֒→ B(∞) b -→ π λ (b) such that for any path b = fi 1 • • • fi l b λ we have π λ (b) = fi 1 • • • fi l b 0 where b 0 is the highest weight vertex of B(∞). Also the crystal B(∞) is endowed with the Kashiwara involution * and the crystal operators have starred versions f * i = * • fi • * and ẽ * i = * • ẽi • * . Thanks to the operators ẽ * i , we get a simple characterization of the image of π λ . Namely, we have Im π λ = {u ∈ B(∞) | ε * (u) λ} where ε * (u) = i∈∈I ε * i (u)ω i and ε * (u) λ means that λε * (u) is a dominant weight. Given any w in the Weyl group W , we also have by Theorem 2.7 π λ (B(λ) w ) = B(∞) w ∩ Im π λ .

6 . 2 . 4

 624 ) Determine b ∈ B(λ) such that π λ (b) = u. (3) Then, u ∈ B(∞) w if and only if b ∈ B(λ) w . Finite, infinite and affine type A. In type A (finite, infinite and affine), vertices of B(∞) are parametrized by multisegments that we now define. Definition 6.1. A segment is a sequence of consecutive integers [a, a + 1, ..., b]. We denote it by [a; b]. A collection (or a formal sum) of segments is called a multisegment. The empty multisegment is denoted by ∅ and we write M for the set of all multisegments. For e ∈ Z ≥2 , let us define M e as the subset of M of the multisegments m in which each segment [a, b] is such that 1 ≤ a < b ≤ e -1. Also define M aff e as the subset of aperiodic multisegments of M, that is the subset of multisegments m ∈ M such that for each length l there exists at least an integer in {0, . . . , e -1} for which m does not contain a segment [bl + 1, b] of length l with b = i mod e. It is then known that in types A e-1 , A ∞ and A (1) e-1 , the crystal B(∞) has a simple realization with ∅ as highest weight vertex and in which the vertices are parametrized by the multisegments in M e , M and M aff e , respectively. Also we determined in [16] the corresponding embedding Π Λs : B(S s (∅)) ֒→ B(∞) compatible with the Uglov realization of crystals for a multicharge s ∈ Z l such that 0 ≤ s 1 ≤ • • • ≤ s l < e (with s 1 ≥ 1 in type A e-1 and e = ∞ in type A ∞ ). The embedding Π Λs can be described as follows. Take λ an l-partition regarded as a sequence of l Young diagrams. Then associate to each row λ k i of λ the segment [a; b] where a = 1i + s k and b = λ k ii + s k are the contents of the leftmost and rightmost boxes in λ k i translated by s k , respectively. The multisegment Π Λs (λ) is then the formal sum of the segments associated to each non empty row of λ. Example 6.2. Consider the multicharge s := (4, 5) and the bipartition (3.2.2, 3.1). Write the associated Young diagrams and fill each box in λ (k) , k ∈ {1, 2} with its content translated by s k : Then, we have Π Λs = [4; 6] + [3; 4] + [2; 3] + [5; 7] + [4].

  r from w i as previously by recursive deletion of the factors RA. The nodes surviving in w

i are the normal i-nodes. Then f i (S s (λ)) is obtained by changing in S s (λ) the entry x appearing in w i corresponding to the rightmost (normal) node into x + 1 if a > 0 and is zero otherwise. The symbol S s (∅) becomes a source vertex of highest weight Λ s and the associated connected component B(S s (∅)) is isomorphic to B(Λ s ). Observe that both crystal structures B(S s (∅)) and B ∞ (S s (∅)) are compatible: we have B(S s (∅)) ⊂ B ∞ (S s (∅)) (i.e. an inclusion of the sets of vertices) and each arrow S s (λ) i → S s (µ) in B(S s (∅)) is an arrow S s (λ) j

  ). Also s 1 + e = s ′ 1 + e + p 1 e and s k = s ′ k + p k e with 0 ≤ (s ′ 1 + e)s ′ k < e. Thus it suffices to see that L s ′ k

Observe our convention here is not the same as in[START_REF] Kashiwara | On crystal bases, Representations of groups[END_REF] and[START_REF] Kashiwara | Bases cristallines des groupes quantiques[END_REF].

Nevertheless, the condition εi(b wλ ) = 0 or ϕi(b wλ ) = 0 does not characterize the elements of O(λ).

There is a similar procedure for computing the left key K L s (λ) also described in[START_REF] Ariki | On the product of two basic representations of Uv( sle)[END_REF]. Thus our forecoming results can also be used to compute the left Key in arbitrary level.

Therefore, λ is a (e, s)-core if and only if for any 1 ≤ a ≤ l, λ a is a e-core and for any 1 ≤ a < l -1, Ls a (λ a ) ⊂ Ls a+1 (λ b ) ⊂ Ls a +e(λ a ).

It also hold in type Ae-1 and A∞ by using the relevant set of multisegments.

We see that all the properties are satisfied and thus that m ∈ Π Λs (O(s, ∞)), the associated 3-partition is (7.2, 5.4.2.2, 3.2.2.1.1.1).

In [START_REF] Jacon | Kashiwara and Zelevinsky involution in affine type A[END_REF], we also got the action of the * -crystal operators and a procedure to compute the minimal symbol associated to a multisegment (i.e. the associated symbol with multicharge corresponding to ε * (m)). Thus, by the previous arguments, we can use the results of Section 5 to decide wether a multisegment m belongs to B(∞). This is direct for types A e-1 and A ∞ but in type A [START_REF] Ariki | On the product of two basic representations of Uv( sle)[END_REF] e-1 , one needs the characterization of the Demazure crystals in the Uglov realization (see Remark 5.20) in order to use the embedding Π Λs . 6.3. Multisegments associated to a (e, s)-core. Given a segment m ∈ M aff e , we now give a direct procedure deciding whether m ∈ Π Λs (O(s, e)) or not 5 , that is characterizing the image of the Key map for the Demazure crystals B(∞) e . To do this, It will be convenient to write our aperiodic multisegments by gathering segments with the same right end as follows:

where m ∈ N and where, for each 1 ≤ j ≤ m, we have r j ∈ N. We can also assume that b

Our algorithm (illustrated by the example below) decides if m ∈ Π Λs (O(s, ∞)) and then construct recursively m + 1 sequences of segments (L j 1 , . . . , L j l ), j = 0, . . . , m starting from (L 0 1 , . . . , L 0 l ) = (∅, . . . , ∅). • If r m > l then the algorithm stops. Otherwise set

• More generally, assume we have the sequence (L m-j 1 , . . . , L m-j l ) and consider the segments [a i j , b j ] for i = 1, . . . , r j . When r j > l the algorithm stops. Otherwise, set L m-j+1 l+r j -k = L m-j l+r j -k for r j < k ≤ l and for each 1 ≤ k ≤ r j , L m-j+1 l+r j -k is obtained by adding the segment [a k j , b j ] at the beginning of the sequence L m-j l+r j -k if this sequence is empty or its first segment [a, b] is such that a = a k j + 1 and b > b j . If not, the algorithm stops. At the end of the procedure either the algorithm stops before all the segments of m have been considered and we then conclude m / ∈ Π Λs (O(s, e) or we get a sequence (L m 1 , . . . , L m l ) of segments : L m j := ([α 1 , β 1 ], . . . , [α p j , β p j ]) Then we consider the symbol

We have m ∈ Π Λs (O(s, e)) if and only if for all (i, j) ∈ {1, . . . , l} 2 we have s is j = p ip j . Moreover, it is easy to see that the symbol we have constructed is nothing but the symbol associated to Π -1 Λs (m). More generally this algorithm shows when there exists s ∈ Z l such that m ∈ Π Λs (O(s, e)). The proof of the the rightness of the algorithm is straightforward. The algorithm simply construct if possible the symbol of a multipartition which satisfies all the properties of being in Π Λs (O(s, e)). Example 6.3. Assume e = ∞ and consider the multisegment [START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF][START_REF] Brubaker | Colored five-vertex models and Demazure atoms[END_REF] + [START_REF] Bump | Crystal bases representations and combinatorics[END_REF][START_REF] Demazure | Une nouvelle formule des caractères[END_REF] + [START_REF] Demazure | Une nouvelle formule des caractères[END_REF][START_REF] Deodhar | Some characterization of the Bruhat order on a Coxeter group[END_REF] + [START_REF] Brubaker | Colored five-vertex models and Demazure atoms[END_REF][START_REF] Deodhar | Some characterization of the Bruhat order on a Coxeter group[END_REF] + [START_REF] Deodhar | Some characterization of the Bruhat order on a Coxeter group[END_REF][START_REF] Fulton | Representation theory[END_REF] + [START_REF] Bump | Crystal bases representations and combinatorics[END_REF][START_REF] Fulton | Representation theory[END_REF] + [START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF][START_REF] Fulton | Representation theory[END_REF] We take s = (0, 2, 4).

• We start with the segments [START_REF] Deodhar | Some characterization of the Bruhat order on a Coxeter group[END_REF][START_REF] Fulton | Representation theory[END_REF], [START_REF] Bump | Crystal bases representations and combinatorics[END_REF][START_REF] Fulton | Representation theory[END_REF] and [START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF][START_REF] Fulton | Representation theory[END_REF] and we get L 1 1 = ( [START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF][START_REF] Fulton | Representation theory[END_REF]), L 1 2 = ( [START_REF] Bump | Crystal bases representations and combinatorics[END_REF][START_REF] Fulton | Representation theory[END_REF]) and L 1 3 = ( [START_REF] Deodhar | Some characterization of the Bruhat order on a Coxeter group[END_REF][START_REF] Fulton | Representation theory[END_REF]). • We then take the segments [START_REF] Demazure | Une nouvelle formule des caractères[END_REF][START_REF] Deodhar | Some characterization of the Bruhat order on a Coxeter group[END_REF] and [START_REF] Brubaker | Colored five-vertex models and Demazure atoms[END_REF][START_REF] Deodhar | Some characterization of the Bruhat order on a Coxeter group[END_REF] and we get L 2 1 = ( [START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF][START_REF] Fulton | Representation theory[END_REF]), L 2 2 = ( [START_REF] Brubaker | Colored five-vertex models and Demazure atoms[END_REF][START_REF] Deodhar | Some characterization of the Bruhat order on a Coxeter group[END_REF], [START_REF] Bump | Crystal bases representations and combinatorics[END_REF][START_REF] Fulton | Representation theory[END_REF]) and L 2 3 = ( [START_REF] Demazure | Une nouvelle formule des caractères[END_REF][START_REF] Deodhar | Some characterization of the Bruhat order on a Coxeter group[END_REF], [START_REF] Deodhar | Some characterization of the Bruhat order on a Coxeter group[END_REF][START_REF] Fulton | Representation theory[END_REF]).

• We then take the segments [START_REF] Bump | Crystal bases representations and combinatorics[END_REF][START_REF] Demazure | Une nouvelle formule des caractères[END_REF] and we get L 3 1 = ( [START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF][START_REF] Fulton | Representation theory[END_REF]), L 3 2 = ([4, 7], [START_REF] Bump | Crystal bases representations and combinatorics[END_REF][START_REF] Fulton | Representation theory[END_REF]) and L 3 3 = ( [START_REF] Bump | Crystal bases representations and combinatorics[END_REF][START_REF] Demazure | Une nouvelle formule des caractères[END_REF], [START_REF] Demazure | Une nouvelle formule des caractères[END_REF][START_REF] Deodhar | Some characterization of the Bruhat order on a Coxeter group[END_REF], [START_REF] Deodhar | Some characterization of the Bruhat order on a Coxeter group[END_REF][START_REF] Fulton | Representation theory[END_REF]). • We then take the segments [START_REF] Brubaker | Colored five-vertex models and Demazure atoms[END_REF] and [START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF][START_REF] Brubaker | Colored five-vertex models and Demazure atoms[END_REF] and we get L 4 1 = ([3, 9]), L 4 2 = ( [START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF][START_REF] Brubaker | Colored five-vertex models and Demazure atoms[END_REF], [START_REF] Brubaker | Colored five-vertex models and Demazure atoms[END_REF][START_REF] Deodhar | Some characterization of the Bruhat order on a Coxeter group[END_REF], [START_REF] Bump | Crystal bases representations and combinatorics[END_REF][START_REF] Fulton | Representation theory[END_REF]) and L 4 3 = ([4], [START_REF] Bump | Crystal bases representations and combinatorics[END_REF][START_REF] Demazure | Une nouvelle formule des caractères[END_REF], [START_REF] Demazure | Une nouvelle formule des caractères[END_REF][START_REF] Deodhar | Some characterization of the Bruhat order on a Coxeter group[END_REF], [START_REF] Deodhar | Some characterization of the Bruhat order on a Coxeter group[END_REF][START_REF] Fulton | Representation theory[END_REF]).

• We then take the segments [START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF], [START_REF] Bjorner | Combinatorics of Coxeter groups[END_REF][START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF] and [START_REF] Bjorner | Combinatorics of Coxeter groups[END_REF][START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF] and we get L 5 1 = ([2, 3], [START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF][START_REF] Fulton | Representation theory[END_REF]), L 5 2 = ([2, 3], [START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF][START_REF] Brubaker | Colored five-vertex models and Demazure atoms[END_REF], [START_REF] Brubaker | Colored five-vertex models and Demazure atoms[END_REF][START_REF] Deodhar | Some characterization of the Bruhat order on a Coxeter group[END_REF], [START_REF] Bump | Crystal bases representations and combinatorics[END_REF][START_REF] Fulton | Representation theory[END_REF]) and L 5 3 = ([3], [START_REF] Brubaker | Colored five-vertex models and Demazure atoms[END_REF], [START_REF] Bump | Crystal bases representations and combinatorics[END_REF][START_REF] Demazure | Une nouvelle formule des caractères[END_REF], [START_REF] Demazure | Une nouvelle formule des caractères[END_REF][START_REF] Deodhar | Some characterization of the Bruhat order on a Coxeter group[END_REF], [START_REF] Deodhar | Some characterization of the Bruhat order on a Coxeter group[END_REF][START_REF] Fulton | Representation theory[END_REF]). • We finally take the segment [START_REF] Bjorner | Combinatorics of Coxeter groups[END_REF] and we get L 6 1 = ([2, 3], [START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF][START_REF] Fulton | Representation theory[END_REF]), L 6 2 = ([2, 3], [START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF][START_REF] Brubaker | Colored five-vertex models and Demazure atoms[END_REF], [START_REF] Brubaker | Colored five-vertex models and Demazure atoms[END_REF][START_REF] Deodhar | Some characterization of the Bruhat order on a Coxeter group[END_REF], [START_REF] Bump | Crystal bases representations and combinatorics[END_REF][START_REF] Fulton | Representation theory[END_REF]) and L 6 3 = ( [START_REF] Bjorner | Combinatorics of Coxeter groups[END_REF], [START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF], [START_REF] Brubaker | Colored five-vertex models and Demazure atoms[END_REF], [START_REF] Bump | Crystal bases representations and combinatorics[END_REF][START_REF] Demazure | Une nouvelle formule des caractères[END_REF], [START_REF] Demazure | Une nouvelle formule des caractères[END_REF][START_REF] Deodhar | Some characterization of the Bruhat order on a Coxeter group[END_REF], [START_REF] Deodhar | Some characterization of the Bruhat order on a Coxeter group[END_REF][START_REF] Fulton | Representation theory[END_REF]).