Multiplicatively dependent vectors with coordinates algebraic numbers In memory of Professor Alan Baker
Résumé
We shall prove that close to each point in \mathbb{C}^n with coordinates of comparable size there is a point (t_1 , ... , t_n) with the property that no multiplicatively dependent vector (u_1 , ... , u_n) with coordinates which are algebraic numbers of height at most H and degree at most d is very close to (t_1 , ... , t_n).
Domaines
Théorie des nombres [math.NT]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...