NON-UNIFORM HYPERBOLICITY IN POLYNOMIAL SKEW PRODUCTS - Archive ouverte HAL
Article Dans Une Revue International Mathematics Research Notices Année : 2022

NON-UNIFORM HYPERBOLICITY IN POLYNOMIAL SKEW PRODUCTS

Résumé

Let $f:\mathbb{C}^2\to \mathbb{C}^2$ be a polynomial skew product which leaves invariant an attracting vertical line $ L $. Assume moreover $f$ restricted to $L$ is non-uniformly hyperbolic, in the sense that $f$ restricted to $L$ satisfies one of the following conditions: 1. $f|_L$ satisfies Topological Collet-Eckmann and Weak Regularity conditions. 2. The Lyapunov exponent at every critical value point lying in the Julia set of $f|_{L}$ exist and is positive, and there is no parabolic cycle. Under one of the above conditions we show that the Fatou set in the basin of $L$ coincides with the union of the basins of attracting cycles, and the Julia set in the basin of $L$ has Lebesgue measure zero. As an easy consequence there are no wandering Fatou components in the basin of $L$.
Fichier principal
Vignette du fichier
NUH.pdf (326.04 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02285663 , version 1 (12-09-2019)
hal-02285663 , version 2 (10-10-2019)
hal-02285663 , version 3 (04-09-2020)
hal-02285663 , version 4 (27-05-2021)

Identifiants

Citer

Zhuchao Ji. NON-UNIFORM HYPERBOLICITY IN POLYNOMIAL SKEW PRODUCTS. International Mathematics Research Notices, 2022. ⟨hal-02285663v4⟩
103 Consultations
107 Téléchargements

Altmetric

Partager

More