The Cheeger constant of an asymptotically locally hyperbolic manifold and the Yamabe type of its conformal infinity - Archive ouverte HAL
Article Dans Une Revue Communications in Mathematical Physics Année : 2020

The Cheeger constant of an asymptotically locally hyperbolic manifold and the Yamabe type of its conformal infinity

Résumé

Let (M, g) be an (n + 1)-dimensional asymptotically locally hyperbolic (ALH) manifold with a conformal compactification whose conformal infinity is (∂M, [γ]). We will first observe that Ch(M, g) ≤ n, where Ch(M, g) is the Cheeger constant of M. We then prove that, if the Ricci curvature of M is bounded from below by −n and its scalar curvature approaches −n(n+1) fast enough at infinity, then Ch(M, g) = n if and only Y(∂M, [γ]) ≥ 0, where Y(∂M, [γ]) denotes the Yamabe invariant of the conformal infinity. This gives an answer to a question raised by J. Lee [L].
Fichier principal
Vignette du fichier
Revised-CheegerYamabe.pdf (207.69 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02282559 , version 1 (10-09-2019)

Identifiants

Citer

Oussama Hijazi, Sebastian Montiel, Simon Raulot. The Cheeger constant of an asymptotically locally hyperbolic manifold and the Yamabe type of its conformal infinity. Communications in Mathematical Physics, 2020, 374, pp.873-890. ⟨10.1007/s00220-019-03545-x⟩. ⟨hal-02282559⟩
44 Consultations
112 Téléchargements

Altmetric

Partager

More