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THE CHEEGER CONSTANT OF AN ASYMPTOTICALLY

LOCALLY HYPERBOLIC MANIFOLD AND THE YAMABE

TYPE OF ITS CONFORMAL INFINITY

OUSSAMA HIJAZI, SEBASTIÁN MONTIEL, AND SIMON RAULOT

Abstract. Let (M, g) be an (n+1)-dimensional asymptotically locally
hyperbolic (ALH) manifold with a conformal compactification whose
conformal infinity is (∂M, [γ]). We will first observe that Ch(M, g) ≤ n,
where Ch(M, g) is the Cheeger constant of M . We then prove that, if
the Ricci curvature of M is bounded from below by −n and its scalar
curvature approaches −n(n+1) fast enough at infinity, then Ch(M, g) =
n if and only Y(∂M, [γ]) ≥ 0, where Y(∂M, [γ]) denotes the Yamabe
invariant of the conformal infinity. This gives an answer to a question
raised by J. Lee [L].

1. Introduction

We will study asymptotically locally hyperbolic (ALH) manifolds in the
more general setting of conformally compact manifolds. During the last
decades, due to the important role that they play in the so-called anti-de
Sitter/conformal field theory (AdS/CFT) correspondence (see [Bi], for in-
stance), this class of Riemannian manifolds has attracted a great deal of in-
terest in both physical and mathematical realms. The mathematical aspects
relative to the existence and the behavior near the infinity of conformally
compact manifolds satisfying the Einstein condition were first studied in the
seminal paper by C. Fefferman and C. Graham [FG]. This particular class
of conformally compact manifolds are the usually called Poincaré-Einstein
(PE) spaces (they necessarily have negative constant scalar curvature).

As in many papers about asymptotically hyperbolic manifolds, here we
will drop the Einstein condition and call ALH manifold any conformally com-
pact Riemannian manifold whose scalar curvature is asymptotically constant
(also necessarily negative). This implies that the same must occur for its
sectional curvatures. In some sense, ALH manifolds are just those looking
like PE spaces at infinity. On the other hand, a Riemannian manifold (M,g)
is called conformally compact if it is a connected complete manifold whose
metric extends conformally to a compact manifold with (non-necessarily
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connected) boundary whose interior is the original manifold. So, by means
of this extended conformal metric, the corresponding original metric deter-
mines a conformal structure on the boundary (∂M, [γ]), which is usually
called the conformal infinity or the boundary at infinity.

In this setting, a natural question is to look for relations between Rie-
mannian invariants of an (n+1)-dimensional ALH manifold M , n ≥ 2, and
conformal invariants of the n-dimensional conformal boundary (∂M, [γ]). A
beautiful result in this direction was obtained by J. Lee in [L]. In fact, he

proved that if Y(∂M, [γ]) ≥ 0, then λ1,2(M) = n2

4 , where Y(∂M, [γ]) denotes
the Yamabe invariant of the compact conformal manifold (∂M, [γ]), which is
the infimum of the total scalar curvature functional over unit-volume metrics
in the conformal class [γ], and λ1,2(M) is the infimum of the L2 spectrum
of the Laplacian of M . In this way, he thoroughly extended a result which
was known to occur when M = H

n+1/Γ is a geometrically finite and cusp-
free quotient of the hyperbolic space by a Kleinian group, a consequence
from previous works by D. Sullivan and by R. Schoen and S.-.T. Yau (see
[Su, SY]). J. Lee pointed out that his theorem is not sharp, in the sense

that there are ALH manifolds M with Y(∂M, [γ]) < 0 but still λ0(M) = n2

4 ,
and raised the question of finding a necessary and sufficient condition on the
geometry of M for Y(∂M, [γ]) ≥ 0. In this direction, C. Guillarmou and J.
Qing proved in [GQ] that, whenM is a PE space with n > 2, Y(∂M, [γ]) > 0
if and only if the largest real scattering pole of M is less than n

2 − 1.
In this work, we answer the aforementioned question (see Theorem 6) by

relating the Yamabe type of the boundary at infinity with the value of the
Cheeger constant Ch(M,g) of the ALH manifold (M,g) (see Section 3 for a
precise definition), namely

Theorem. Let (M,g) be an (n+ 1)-dimensional conformally compact Rie-
mannian manifold of order Cm,α with m ≥ 3, 0 < α < 1 and whose Ricci
tensor and scalar curvature satisfy

Ricg + ng ≥ 0, Rg + n(n+ 1) = o
(

r2
)

,

where r is any defining function on M , then

Ch(M,g) = n ⇐⇒ Y(∂M, [γ]) ≥ 0.

Since it is not difficult to observe that Ch(M,g) ≤ n for each (n + 1)-
dimensional ALH manifold (see Corollary 4), an equivalent statement of our
characterization is to say that Y(∂M, [γ]) ≥ 0 if and only if the following
linear isoperimetric inequality

A(∂Ω) ≥ nV (Ω) (1)

holds for all compact domains Ω ⊂ M (see Corollary 7). This isoperimet-
ric inequality was well-known to be valid for hyperbolic spaces and S.-T.
Yau proved that it is also true on complete simply connected Riemannian
manifolds with sectional curvatures bounded from above by −1 (see [Y] and
[BZ, Theorem 34.2.6]). Another direct consequence of our main result is the
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generalization of the result of Lee on the bottom of the L2 spectrum of the
Laplacian of M to the principal eigenvalue of its p-Laplacian (see Theorem
9).

It is worth mentioning (and maybe useful to the reader) that, in a different
context of hyperbolicity, J. Cao [C] also explored the relation between the
geometric properties of a Gromov-hyperbolic space and some diverse features
of its boundary at infinity.

2. Conformally compact Riemannian manifolds

Let M be a (connected) compact (n+ 1)-manifold with (non-necessarily
connected) boundary and n ≥ 2. The interior of M will be denoted by M
and its boundary by ∂M . If g is a smooth Riemannian metric on M , the
open Riemannian manifold (M,g) is said to be conformally compact of order
Cm,α if, for some (and hence for all) smooth defining function ρ, the smooth
conformal metric ρ2g on M extends to a Cm,α Riemannian metric g on M .
Here Cm,α denotes the classical Hölder space form ∈ N and α ∈ [0, 1]. Recall
that a C1 map ρ :M → R is a defining function of the boundary if it is a non-
negative function such that ρ−1({0}) = ∂M and dρ 6= 0 everywhere on ∂M .
It is obvious that there are many different defining functions for ∂M , but all
the corresponding extended metrics g = ρ2g will have conformally equivalent
restrictions to the boundary ∂M . Then, if γ = g|∂M , the conformal manifold

(∂M, [γ]) is well defined and depends only on (M,g). This pair is called the
conformal infinity of (M,g).

The simplest example of a conformally compact Riemannian manifold is
the hyperbolic space H

n+1 which can be realized as the Riemannian man-

ifold
(

Bn+1, 4|dx|2

(1−|x|2)2

)

. Here Bn+1 = {x ∈ R
n+1 / |x| < 1} is the (n + 1)-

dimensional Euclidean unit open ball and |dx|2 is the flat Euclidean metric.
In this situation, the map x ∈ Bn+1 7→ (1 − |x|2)/2 is a defining function
for the boundary ∂Bn+1 = S

n and the corresponding conformal infinity is
then easily seen to be (Sn, [g0]), where [g0] denotes the conformal class of
the round metric g0 of constant sectional curvature 1 on S

n.
Assume now that the conformally compact Riemannian manifold (M,g)

is of order at least C2. Then using the relation of the Riemannian curvature
tensors under conformal changes of metrics (see, for instance, [Be, p. 59]),
it can be easily seen that all its sectional curvatures Kg uniformly approach

−|∇ρ|2g as ρ → 0. Here ∇ is the gradient operator corresponding to the
metric g and the norm is taken with respect to the same metric as that
of the gradient. So, it is clear that the quantity |∇ρ|g restricted to ∂M
depends only on the original metric g. Thus, conformally compact mani-
folds of order at least C2 are asymptotically negatively curved. From this
observation, we will say that a conformally compact Riemannian manifold
(M,g) is asymptotically locally hyperbolic (ALH) when |∇ρ|g|∂M is constant,
that we normalize to be equal to 1. It immediately follows that we have
Kg → −1 near infinity and so the Ricci tensor satisfies Ricg → −ng, that is,
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the manifold seems to be Einstein with Ricci curvature −n when one moves
towards infinity. Obviously, the scalar curvature Rg tends to the constant
value −n(n+ 1).

Conversely, from the transformation rules of the Ricci tensor and the
scalar curvature of conformal metrics, it can be seen that any of these
asymptotical behaviors for Kg, Ricg or Rg implies that |∇ρ|g|∂M = 1 for

any defining function ρ. This means that a C2 conformally compact Rie-
mannian manifold is ALH if and only if it is asymptotically Einstein, that
is, Ricg + ng → 0 uniformly. As we just noticed, it is also equivalent
to the fact that the scalar curvature is asymptotically constant, that is,
Rg + n(n + 1) → 0 uniformly as ρ → 0. In particular, this occurs when
the manifold (M,g) is supposed to be Einstein. In this case, (M,g) is of-
ten called a Poincaré-Einstein manifold (in short, a PE manifold) and we
have Ricg + ng = 0. The weaker condition on the constant scalar curvature
Rg + n(n+ 1) = 0 implies that (M,g) is an ALH manifold as well.

In the general non-necessarily Einstein ALH case, if we assume (M,g)
to be conformally compact of order at least C3,α, we can modify any given
smooth defining function ρ to get another one r ∈ C2,α(M ) such that the cor-
responding extended conformal metric g = r2g is of class C2,α and |∇r|g ≡ 1
in a collar neighborhood of the boundary at infinity ∂M . More precisely,
we have

Lemma 1. ([GL, Lemma 5.2], [L, Lemma 5.1]) Let (M,g) be an ALH man-
ifold of class Cm,α with m ≥ 3 and 0 < α < 1. For each choice of a
metric γ on its conformal infinity (∂M, [γ]), there exists a defining function
r ∈ Cm−1,α(M ) uniquely determined in a neighborhood of ∂M such that the
extended conformal metric g = r2g is of class Cm−1,α, |∇r|g ≡ 1 in this
neighborhood and with

g = dr2 + gr = dr2 + γ + rg(1) + r2g(2) +O(r2+α), (2)

where O(r2+α) is a symmetric two-tensor on ∂M . Moreover g(i) is of class
C2−i,α for i = 0, 1, 2 and is computable from the iterated Lie derivatives of
the extended metric:

g(i) =
1

i!
L
(i)

∇r
g
∣

∣

∣

r=0
. (3)

We will say that such a function r is the geodesic defining function associated
with the metric γ.

For these reasons, we will always assume in this paper that the ALH hy-
perbolic manifolds considered are of class Cm,α with m ≥ 3 in such a way
that for any choice of a metric in the conformal infinity we have a compact-
ification of class C2,α for which the compactified metric has an expansion
given by (2). A particularly interesting class of such manifolds are the PE
spaces or, as discussed in the next section, the weakly Poincaré-Einstein
(WPE) spaces.
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3. Upper bounds for the Cheeger constant of ALH manifolds

In this section, we will see that the Yamabe type of the conformal infinity
(∂M, [γ]) has a direct influence on the isoperimetric behavior of the large
regions of (M,g). In fact, we will observe that these properties can be
expressed using the Cheeger constant of M .

In a first step, we collect some curvature properties for level hypersurfaces
(near infinity) of any geodesic defining function of the boundary. More
precisely, suppose that (M,g) is an ALH manifold and fix γ ∈ [γ] and r the
corresponding geodesic defining function. For r > 0 sufficiently small, the
level sets Σr = {r = const.} are smooth compact embedded hypersurfaces.
If Hr denotes the (inner) mean curvature of Σr, it is straightforward to
observe from the first equality in (2) that

Hr =
1

2n
r2Trgr

(

− r∂r(r
−2gr)

)

= 1−
r

2n
Trgr(∂rgr). (4)

Then using the second equality in (2), we compute that

Hr = 1−
r

2n
Trγ(g

(1)) +
1

n

(1

2
Trγ(A

2
g)− Trγ(g

(2))
)

r2 +O(r2+α) (5)

where Ag is the symmetric endomorphism of the tangent bundle of ∂M with

respect to γ defined by Ag := γ−1g(1). We immediately deduce from (4) that
Hr is C2,α in r and H0 = 1.

Assume now for a moment that the manifold is weakly Poincaré-Einstein
(WPE) in the sense that the coefficients in the asymptotic expansion (2) of

g are given by g(1) = 0 and

g(2) = −Pγ = −
1

n− 2

(

Ricγ −
Rγ

2(n − 1)
γ
)

where Ricγ , Rγ and Pγ denote respectively the Ricci tensor, the scalar cur-
vature and the Schouten tensor of γ. It can be shown that these conditions
are equivalent to a second order decay assumption of the Ricci tensor of the
metric g namely |Ricg+ng|g = o(r2). Then in this situation we observe that
formula (5) directly implies that H ′

0 = 0 and H ′′
0 = Rγ/(n(n − 1)) so that

the value on the boundary of the second derivative of the mean curvature of
the level sets of the geodesic defining function with respect to γ is precisely
encoded by the scalar curvature of this metric. The purpose of the next
proposition is to show that a similar result holds under weaker curvature
assumptions. By keeping the notations introduced in the above discussion,
we have

Proposition 2. Let (M,g) be an (n + 1)-dimensional ALH manifold of
order Cm,α with m ≥ 3 and 0 < α < 1. Then Hr extends to a C2,α function
at r = 0 with H0 = 1. If, in addition, we have Rg + n(n+ 1) = o

(

r2
)

, then

H ′
0 = 0, H ′′

0 ≤
Rγ

n(n− 1)
. (6)
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If, moreover, we have Ricg ≥ −ng, then for ε > 0 sufficiently small,

Hr ≥ 1 +
Rγ

2n(n− 1)
r2, 0 ≤ r ≤ ε. (7)

Remark 1. It is clear that the decay conditions on the scalar and the Ricci
curvatures are slightly hardening the ALH condition. Note however that
they are obviously satisfied when (M,g) is a PE space or a WPE space.

Proof. As before, we will work in a collar neighborhood of ∂M where
|∇r|2g = 1 for r the unique geodesic defining function associated with γ
whose existence is ensured by Lemma 1. Note that we have already proved
that Hr is a C2,α function in r with H0 = 1.

First observe that since g and g = r2g are two conformally related metrics,
their scalar curvatures satisfy

1

r

(

Rg + n(n+ 1)
)

= rRg + 2n∆r. (8)

So if we assume that Rg + n(n + 1) = o(r2), the previous identity implies

in particular that ∆r|∂M = 0. On the other hand, since g = dr2 + gr we
compute that

∆r|∂M =
1

2
Trγ(g

(1)) (9)

and then H ′
0 = −Trγ(g

(1))/(2n) = 0 where the first equality follows from
(5). Moreover, since

∂r
√

det(gr)
√

det(gr)
=

1

2
Trgr(∂rgr) = r

(

Trγ(g
(2))−

1

2
Trγ(A

2
g)
)

+O(r1+α) (10)

we also deduce from (8) that

Rg + n(n+ 1)

r2
= Rg + 2n

(

Trγ(g
(2))−

1

2
Trγ(A

2
g)
)

+O(rα). (11)

Our assumption on the asymptotic behavior of the scalar curvature implies
that

H ′′
0 = −

2

n

(

Trγ(g
(2))−

1

2
Trγ(A

2
g)
)

=
1

n2
Rg|∂M (12)

where the first equality follows from (5).
Now we note that the mean curvature Hr is easily computable using

the well-known relation between the two mean curvatures of a hypersurface
corresponding to two conformal metrics g = 1

r2
g on the ambient space (see

[E], for instance):

Hr = r
(

Hr − g(∇ log
1

r
,N r)

)

= 1 + rHr. (13)

Here N r = ∇r (resp. Hr) denotes the inner unit normal (resp. the mean
curvature) of Σr with respect to the metric g. This identity immediately
implies that H0 = 0.
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Moreover, since r is in fact the g-distance from the boundary, the mean
curvature function Hr satisfies the well-known Riccati equation (which can
be deduced from [P, p. 44])

nH
′
r = |σr|

2
g +Ricg(N r, N r) (14)

where σr is the second fundamental form of Σr with respect to the metric
g. On the other hand, since H0 = 0, the Gauß formula implies that

Ricg(N0, N0) =
1

2

(

Rg|∂M −Rγ − |σ0|
2
g

)

and so (14) for r = 0 writes

H
′
0 =

1

2n

(

Rg |∂M −Rγ + |σ0|
2
g

)

.

This with formula (13) yields to

H ′′
0 =

1

n

(

Rg |∂M −Rγ + |σ0|
2
g

)

which, when combined with (12), gives

H ′′
0 =

1

n(n− 1)

(

Rγ − |σ0|
2
g

)

.

The inequality in (6) follows directly.
We assume now in addition that Ricg ≥ −ng. Since g and g are confor-

mally related we compute (see [Be, p. 59]) that

r(Ricg + ng) = rRicg + (n− 1)∇
2
r + (∆r)g (15)

where ∇
2
denotes the Hessian of a function with respect to g. Applying this

formula to the vector field ∇r
r and using the fact that |∇r|g = 1 yield to

Ricg(N r, N r)−
nHr

r
≥ 0 (16)

since Hr = − 1
n∆r. Taking the limit as r → 0 implies that

Ricg(N0, N 0) ≥ nH
′
0. (17)

However from (14) with r = 0, we observe that this inequality is in fact an
equality so that

σ0 = 0 and H
′
0 =

Rγ

2n(n− 1)
. (18)

On the other hand, combining (14) and (16) we get

H
′
r −

Hr

r
≥ 0

and then the map r 7→ Hr/r is non decreasing. This property with (18)
gives (7). q.e.d.

Recall that a compact connected Riemannian manifold is said to be of
positive (respectively, negative or zero) Yamabe type when its metric can
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be conformally deformed into a metric with positive (respectively, negative
or zero) constant scalar curvature. This Yamabe type is precisely encoded
by the sign of its Yamabe invariant Y(∂M, [γ]). In fact, this number (and so
its sign) only depends on the conformal structure of the manifold so that any
compact connected Riemannian manifold must belong just to one of these
three conformal types. The next proposition gives a first relation between
the Yamabe type of a connected component of the conformal boundary
(∂M, [γ]) and the asymptotic behavior of the isoperimetric profile of certain
compact domains in M . More precisely, we have

Proposition 3. Let (M,g) be an (n+1)-dimensional ALH manifold of order
Cm,α with m ≥ 3 and 0 < α < 1. Let r be the geodesic defining function
associated with a metric γ in the conformal infinity (∂M, [γ]). For each
r > 0 small enough, there exists a compact domain Ωr ⊂ M with smooth
boundary ∂Ωr such that

lim
r→0

Ar

Vr
= n, (19)

where Ar and Vr denote respectively the n-dimensional Riemannian area of
∂Ωr and the Riemannian volume of the domain Ωr. Moreover if we assume
that a connected component of ∂M has negative Yamabe invariant and that
the scalar curvature Rg of (M,g) satisfies

Rg + n(n+ 1) = o(r2)

near this component for some defining function r, then Ar < nVr for all
r > 0 small enough.

Proof. Let r be the geodesic defining function associated with a metric γ
in the conformal infinity and denote by Σj, j ∈ {1, · · · , k}, its connected
components. Let U be a neighborhood of ∂M and for t > 0 sufficiently
small define Mt =M \

(

r−1(]0, t[) ∩ U
)

. Then there exists t0 > 0 such that
for all 0 < t < t0, (Mt, g) is a compact Riemannian manifold contained in
M whose boundary

∂Mt = Σ1,t ⊔ · · · ⊔ Σk,t

has exactly k connected components Σj,t each of them being diffeomorphic to
Σj for j ∈ {1, · · · , k}. Finally we fix 0 < r0 < t0 and we define for 0 < r < r0
the smooth compact domain Ωr by fixing all but one the components of ∂Mt

at a g-distance r0 to ∂M and, in particular, we can assume that the boundary
of Ωr is

∂Ωr = Σ1,r ⊔Σ2,r0 ⊔ · · · ⊔ Σk,r0.

Now by a direct application of the Taylor formula we have from (2) and
(5) that

√

det gr
det γ

= 1 + α1r + α2r
2 +O(r2+α) (20)
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where

α1 = −nH ′
0 and α2 =

n

2

(

nH ′2
0 −

H ′′
0

2

)

. (21)

Recall that Hr is the mean curvature of Σ1,r in (M,g) for 0 < r < r0 whose
C2,α extension to r = 0 has been proved in the previous proposition. Then
the area Ar of the compact hypersurface ∂Ωr with respect to the metric g
is

Ar = A(Σ1,r) + C0 = r−n

∫

Σ1

√

det gr
det γ

dvγ + C0

where dvγ is the Riemannian volume element of γ and C0 is the area of
the other connected components of ∂Ωr (which does not depend of r). A
straightforward computation using (20) gives

Ar = r−nVolγ(Σ1)
(

1 + β1r + β2r
2 +O(r2+α)

)

(22)

for n ≥ 3 and

Ar = r−2Volγ(Σ1)
(

1 + β1r +O(r2)
)

(23)

for n = 2 where βj is the constant defined by

βj =
1

Volγ(Σ1)

∫

Σ1

αj dvγ (24)

for j = 1, 2. Here Volγ(Σ1) denotes the Riemannian volume of Σ1 with
respect to γ. Similarly there exists a constant C1 > 0 independent of r such
that the volume Vr of Ωr with respect to g is given by

Vr = C1 +

∫

Σ1

∫ r0

r

√

det gs
det γ

dsdvγ

so that

Vr =
r−nVolγ(Σ1)

n

(

1 +
nβ1
n− 1

r +
nβ2
n− 2

r2 +O(r2+α)

)

(25)

for n ≥ 3 and

Vr =
r−2Volγ(Σ1)

2

(

1 + 2β1r + 2β2r
2 log

1

r
+O(r2)

)

(26)

for n = 2. Combining (22) with (25) and (23) with (26) immediately prove
that (19) holds for all n ≥ 2. Now if Σ1 has negative Yamabe invariant
we can assume without loss in generality that the scalar curvature of γ is
negative on Σ1. Moreover if Rg+n(n+1) = o(r2), we have from Proposition
2 that H ′

0 = 0 and thus

β1 = 0 and β2 = −
n

4Volγ(Σ1)

∫

Σ1

H ′′
0 dvγ
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because of (21) and (24). Using these facts in (22) and (25) finally leads for
n ≥ 3 to

Ar

Vr
= n

(

1 +
n

2(n − 2)Volγ(Σ1)

(
∫

Σ1

H ′′
0 dvγ

)

r2 +O(r2+α)

)

.

Now since we assume that Rγ is negative on Σ1, the inequality in (6) of
Proposition 2 implies that

∫

Σ1

H ′′
0 dvγ ≤

1

n(n− 1)

∫

Σ1

Rγ dvγ < 0 (27)

so that Ar < nVr for r sufficiently small. In a same way, for n = 2 we derive
from (23) and (26) that

Ar

Vr
= 2

(

1 +
1

Volγ(Σ1)

(
∫

Σ1

H ′′
0 dvγ

)

r2 log
1

r
+O(r2)

)

which also gives that Ar < 2Vr for r > 0 small enough because of (27).
q.e.d.

From Proposition 3, we immediately deduce an upper bound for the
Cheeger constant Ch(M,g) of any ALH manifold. Recall that this isoperi-
metric constant is defined for any Riemannian manifold by

Ch(M,g) = inf
Ω

A(∂Ω)

V (Ω)
, (28)

where the infimum is taken over all the compact (smooth) domains in M ,
A(∂Ω) being the area of the compact hypersurface ∂Ω and V (Ω) the volume
of the domain Ω. Then we prove

Corollary 4. The Cheeger isoperimetric constant Ch(M,g) of an (n + 1)-
dimensional ALH manifold (M,g) of order Cm,α with m ≥ 3 and 0 < α < 1
satisfies

Ch(M,g) ≤ n.

If some connected component of the conformal infinity (∂M, [γ]) has negative
Yamabe invariant and if, near this component, for some defining function
r, the scalar curvature Rg of M satisfies

Rg + n(n+ 1) = o(r2),

then
Ch(M,g) < n.

Remark 2. Note that the second part of the previous corollary applies for
WPE manifolds.

Proof. Choose any geodesic defining function r for the ALH manifold M
and let Ωr ⊂M be the compact domain associated with r > 0 small enough
as in Proposition 3. If Ch(M,g) > n, since Proposition 3 assures that
limr→0(A(∂Ωr)/V (Ωr)) = n, then Ch(M,g) could not be a lower bound for
the set of the isoperimetric quotients A(∂Ω)/V (Ω), with Ω ⊂ M compact.
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Thus, we have Ch(M,g) ≤ n for any ALH manifold M . Now, assume
that the conformal infinity (∂M, [γ]) of the given ALH manifold M has at
least one connected component with negative Yamabe type which, near this
component, satisfies the decay condition Rg + n(n + 1) = o(r2). In this
situation, the second part of Proposition 3 provides compact domains Ωr

in M such that A(∂Ωr) < nV (Ωr), hence we directly have Ch(M,g) < n.
q.e.d.

4. Some examples

Let
(

Bn+1, 4|dx|2

(1−|x|2)2

)

be the Poincaré hyperbolic ball. Using the change

of variables given by s = ln 1+|x|
1−|x| ∈ R+, we obtain the metric

g = ds2 + (sinh2 s)γSn .

This expression for the Poincaré metric is valid only on the punctured ball
Bn+1 − {0} ∼= R

∗
+ × S

n, although it is smoothly extendible to the origin.
Written in this way, we can see that the hyperbolic metric is an example

of the so-called warped Riemannian products (see for instance, [Be, O’N, K]).
In general, if I ⊂ R is an open interval, (P, γ) a Riemannian n-manifold and
f ∈ C∞(I) is a positive function, we will say that the (n + 1)-dimensional
Riemannian manifold (I × P, g = ds2 + f(s)2γ) is the product of I and P
warped by the function f . We will restrict ourselves to warping functions f
satisfying f ′′−f = 0. With this choice, we ensure that Ricg(

∂
∂s ,

∂
∂s) = −n at

each point of I ×P (see [K, Lemma 4]). Moreover, taking also into account
the values of Ricg on the directions orthogonal to the vector field ∂

∂s , that
is, directions tangent to P , we conclude that there are essentially three
types of warped products which eventually may produce PE spaces with
scalar curvature −n(n + 1), according to the warping function is chosen to
be sinh s, es or cosh s (conical singularities and cusps being provisionally
permitted).

Example 1. The first class of manifolds we consider here is the so-called
hyperbolic cones on given compact Riemannian manifolds (P, γ), which are
defined by

(

M = R+ × P, g = ds2 + (sinh2 s)γ
)

.

Defining a new variable t ∈]0, 1] by t = tanh s
2 , we obtain that the conformal

metric

g =

(

1

1 + cosh s

)2

g = dt2 + t2γ

extends to [0, 1]×P that is to a compact manifold with boundary {1}×P ∼= P
and a conical singularity at t = 0. This singularity is removable if and only
if (P, γ) is the round unit n-sphere and, in this case, the corresponding
hyperbolic cone is nothing but the (n+1)-dimensional hyperbolic space (see
[Be, p. 269, Lemma 9.114]).
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It is clear from the above considerations, that if (Sn, γ) is the round unit
sphere and f : R+ → R

∗
+ coincides with s 7→ sinh s, both near 0 and +∞,

the warped product metric given by
(

M = R+ × S
n, g = ds2 + f(s)2γ

)

,

also avoids the conical singularity at s = 0 and that the resultant (n + 1)-
dimensional Riemannian manifold (M,g) is a rotationally invariant deforma-
tion of the hyperbolic space. These manifolds are not in general PE spaces
but are WPE spaces whose conformal infinity is obviously (Sn, [γ]), and so
they trivially have positive Yamabe type. For a fixed ε > 0, if we choose f
in such a way that

f

(

1

ε

)

= f

(

3

ε

)

= ε
1

n , f(s) ≥ ε
1

n , ∀s ∈

[

1

ε
,
3

ε

]

,

and represent by Ωε the domain
]

1
ε ,

3
ε

[

× P ⊂M , we have

A(∂Ωε)

V (Ωε)
=

2εA(P )
∫ 3/ε
1/ε

∫

P f(s)
n ds dP

≤ ε.

Hence, from Definition (28), we obtain

Ch(M,g) ≤ ε.

This means that we have (n+1)-dimensional ALH manifolds (in fact, WPE
spaces) with conformal infinity of positive Yamabe type and Cheeger isoperi-
metric constants arbitrarily small belonging to the interval [0, n].

Example 2. The second type we also consider here is of the form
(

M = R× P, g = ds2 + (cosh2 s)γ
)

.

Such warped product metrics satisfy (see [K], for instance)

Ricg(
∂

∂s
,
∂

∂s
) = −n and Rg + n(n+ 1) = Rγ + n(n− 1).

Hence, as before, to get a WPE space, we will impose on (P, γ) to have
scalar curvature −n(n−1). In order to compactify, we define a new variable
t ∈]0, π[ by the relation t = 2arctan es. Then

g =

(

1

cosh s

)2

g = dt2 + γ,

is smoothly extendable to the compact manifold [0, π] × P . Hence, its con-
formal infinity (∂M, [γ]) consists of two copies of (P, [γ]). Thus we obtain
an example of WPE space whose conformal compactification has two con-
nected components at the conformal boundary (a wormhole in the physical
jargon), both with negative Yamabe type. Now, if f : R → R

∗
+ coincides

with s 7→ cosh s both near −∞ and +∞, the manifold (P, γ) is a Riemann-
ian manifold with constant scalar curvature −n(n − 1), and we consider a
warped product

(

M = R× P, g = ds2 + f(s)2γ
)

,
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then the corresponding (n+ 1)-dimensional Riemannian manifold (M,g) is
a deformation of the above one which is still a WPE space with conformal
infinity consisting of two copies of (P, [γ]) as well. We may require f to have
exactly the same behavior as in the above example on the interval [1ε ,

3
ε ]

and we conclude that there are (n+1)-dimensional ALH manifolds (in fact,
WPE spaces) with conformal infinity of negative Yamabe type and Cheeger
isoperimetric constants arbitrarily small inside the interval [0, n[.

5. The Cheeger constant of (M,g) and the Yamabe type of

(∂M, [γ])

In this section, we state and prove the main result of this paper which
relates the value of the Cheeger constant of a conformally compact Rie-
mannian manifold with the Yamabe type of its conformal infinity. As we
are admitting the possibility that ∂M is not connected, we should be more
precise in the definition of the Yamabe type of the conformal infinity in this
setting. However, using a famous result on the connectedness of the bound-
ary at infinity by E. Witten and S.-T. Yau (for boundaries with a component
of positive Yamabe type) and by M. Cai and G. Galloway (for boundaries
with a component of null Yamabe type), we will avoid this discussion. In
order to make this paper self-contained, we include a new proof of this re-
sult which simplifies and unifies the two aforementioned proofs and slightly
weakens their hypotheses (and fits into ours). In fact, we will show that
these two theorems can be seen as direct consequences of an old paper by A.
Kasue [Ka] generalizing the Bonnet-Myers theorem to complete manifolds
with non-empty boundary.

Theorem 5. ([WY, CG]) Let (M,g) be an (n+1)-dimensional conformally
compact Riemannian manifold of order Cm,α with m ≥ 3 and 0 < α < 1
whose Ricci tensor and scalar curvature satisfy

Ric g + ng ≥ 0, Rg + n(n+ 1) = o(r2), (29)

where r is a geodesic defining function. Suppose that the conformal infinity
(∂M, [γ]) has a connected component with non-negative Yamabe invariant.
Then ∂M is connected.

Proof. Let ∂M0 be the component of the conformal infinity (∂M, [γ]) with
non-negative Yamabe invariant. By the solution of the Yamabe problem
[Sc2], we can choose a metric γ ∈ [γ] with constant scalar curvature, say
Rγ = n(n − 1)ε2, where ε = 1 or ε = 0 depending on whether the Yam-
abe invariant is positive or zero. Denote by r the unique geodesic defining
function associated with γ whose existence is given by Lemma 1. Let U be
a neighborhood of ∂M0 which does not meet any other component of ∂M
and Mt = M −

(

r−1(]0, t[) ∩ U
)

. For t > 0 sufficiently small, (Mt, g) is
a Riemannian manifold with boundary, whose one of its components Σt is
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diffeomorphic to ∂M0 and whose mean curvature satisfies

Ht ≥ 1 +
ε2

2
t2, (30)

(see (7) in Proposition 2).
Suppose now that the Yamabe invariant of ∂M0 is positive, that is, ε =

1. In this situation, (Mt, g) is a complete Riemannian manifold such that
Ric g ≥ −ng and whose compact connected boundary Σt satisfies Ht > 1
from (30). Hence we can apply [Ka, Theorem A] (see also [CG, Proposition
2], which reproves a part of Kasue’s result) and conclude that Mt must be
compact. So Σt is the unique component of its boundary. This means that
∂M0 is the unique component in ∂M and ∂M is connected, as claimed.

When the Yamabe invariant of ∂M0 is zero, i.e. ε = 0, the same reason-
ing provides (Mt, g) as above with Ht ≥ 1. If Mt is non-compact, a direct
application of [Ka, Theorem C] implies that minHt = 1 and Mt is isomet-
ric to the warped product

(

[0,+∞[×Σt, ds
2 + e−2sg|Σt

)

(for definitions and
properties about warped products, see [Be, O’N, K] or Remark 1 below).
This means that Mt has a connected compact boundary Σt and one end
which is a hyperbolic cusp. This contradicts the fact that every end of an
ALH manifold has infinite volume (since the volume of a hyperbolic cusp is
finite). We conclude that Mt is compact and then ∂M has to be connected.
q.e.d.

Assume now that (M,g) is a conformally compact manifold satisfying the
curvature assumptions (29) and that a connected component of its conformal
boundary (∂M, [γ]) has negative Yamabe invariant. From the solution of
the Yamabe problem, we can assume that this component has constant
negative scalar curvature so that Corollary 4 implies that Ch(M,g) < n.
Since Ch(M,g) ≤ n for all ALH manifolds, we immediately deduce that
if Ch(M,g) = n, then a connected component of the boundary at infinity
(∂M, [γ]) must have a non negative Yamabe invariant and this implies that
∂M is in fact connected using Theorem 5. We sum up these properties and
show that the converse is also true in our main result:

Theorem 6. The Cheeger constant Ch(M,g) of an (n+1)-dimensional ALH
manifold (M,g) of order Cm,α with m ≥ 3 and 0 < α < 1 whose conformal
infinity is (∂M, [γ]) satisfies

Ch(M,g) ≤ n.

Moreover, if the Ricci and the scalar curvatures of M satisfy

Ricg + ng ≥ 0, Rg + n(n+ 1) = o
(

r2
)

,

where r is any defining function on M , then we have

Ch(M,g) = n ⇐⇒ Y(∂M, [γ]) ≥ 0,

where Y(∂M, [γ]) denotes the Yamabe invariant of the conformal boundary.
In particular, (∂M, [γ]) is connected.
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Proof. It only remains to prove that if Y(∂M, [γ]) ≥ 0 then Ch(M,g) = n.
Since we know from Corollary 4 that Ch(M,g) ≤ n, hence it is sufficient to
prove that Ch(M,g) ≥ n. We originally proved this fact using an approach
relying on geometric measure theory (as in [W]). However, we found in [FR]
an elementary proof due to Gilles Carron for PE manifolds. We shall see
that these arguments always work under our (weaker) assumptions. Indeed,
recall from [L] (see [HM, Proposition 3] for a precise statement) that if r
is a geodesic defining function satisfying (29), then there exists a unique
positive function u ∈ C∞(M) such that ∆u = (n + 1)u and u − 1

r is a
bounded function. If in addition Y(∂M, [γ]) ≥ 0, it can be shown (see
[L, Proposition 4.2]) that the function u2 − |∇u|2g is superharmonic on M ,

extends continuously toM and vanishes on ∂M so that the strong minimum
principle implies u2 − |∇u|2g ≥ 0. Then if we let f = lnu on M , it is
straightforward to check that this function satisfies

|∇f |2g ≤ 1 and ∆f ≥ n. (31)

Now consider a smooth compact domain Ω in M and integrate (using the
Stokes formula) the second inequality in (31) over Ω, to get

−

∫

∂Ω

∂f

∂N
≥ nV (Ω) (32)

where N denotes the inner unit normal to Σ in Ω. On the other hand, the
first inequality in (31) implies

−

∫

∂Ω

∂f

∂N
≤

∫

∂Ω

∣

∣

∣

∂f

∂N

∣

∣

∣
≤ A(∂Ω). (33)

Combining (32) and (33) gives A(∂Ω) ≥ nV (Ω) for all smooth compact
domains of M which is exactly Ch(M,g) ≥ n, as claimed. q.e.d.

Remark 3. Theorem 6 implies that the rotationally invariant deformations
(M,g) of the hyperbolic space Hn+1 built in Example 1 to provide examples
of WPE spaces with conformal infinity of positive Yamabe type and arbi-
trarily small Cheeger constant, cannot satisfy the hypothesis on the Ricci
curvature, that is, Ricg cannot admit −n as a lower bound. If so, these
examples provide conformally compact manifolds whose conformal infinity
is the round conformal sphere and such that (29) holds. However, the rigid-
ity result of such conformally compact manifolds implies that (M,g) has to
be the hyperbolic space that is f(s) = sinh s for all s ∈ R+ (see Corollary
1.5 in [LQS]). This contradicts the fact that the Cheeger constant of the
hyperbolic space is n. It is worth mentioning that this result can be di-
rectly (and easily) observed by looking closer at such examples. Indeed, if
(M = R+× S

n, g = ds2+ f(s)2γ) is as in Example 1 with Ricg +ng ≥ 0, we
would necessarily have f ′′ ≤ f . Letting y = f ′/f , we immediately observe
that y satisfies y′ + y2 ≤ 1 on R+. Since y coincides with z : s 7→ cotanh s
in a neighborhood of 0 and +∞ satisfying z′+ z2 = 1, we can apply Lemma
4.1 in [Ba] to conclude first that y(s) = cotanh s for all s ∈ R+ and then
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that f(s) = sinh s on R+: the manifold (M,g) is isometric to the hyperbolic
space so that we get the desired contradiction.

6. Some direct consequences

6.1. Minimizer of the Cheeger constant. A direct consequence of The-
orem 6 is that the Cheeger constant of a conformally compact manifold
satisfying (29) does not possess smooth minimizer. Indeed if we denote by
Ω0 such a domain then we obviously have

Ch(M,g) = n =
A(∂Ω0)

V (Ω0)
. (34)

On the other hand, given a smooth function f on ∂Ω0, we consider the
normal variation of ∂Ω0 defined by

ψt : p ∈ ∂Ω0 7→ expp
(

− tf(p)N0(p)
)

∈M

where exp is the exponential map of M and N0 is the inner unit vector
normal to ∂Ω0 in Ω0. Denote by A(t) the area of the hypersurface ψt(∂Ω0) as
well as V (t) the volume of the domain enclosed by ψt(∂Ω0) for |t| sufficiently
small. Since Ω0 is a minimum of Ch(M,g) we must have

d

dt |t=0

A(t)

V (t)
= 0

which, from the first variational formulae of the area and of the volume, is
equivalent to

∫

∂Ω0

f
(

nHV (Ω0)−A(∂Ω0)
)

= 0

for any f ∈ C∞(∂Ω0). We conclude that nH = A(∂Ω0)/V (Ω0) and then
H = 1 because of (34). Now since Ricg + ng ≥ 0, the Heintze-Karcher
inequality [HK] implies

V (Ω0) ≤ A(∂Ω0)

∫ R0

0

(

cosh t−H0 sinh t
)n
dt

where H0 is the minimum of H on ∂Ω0 and R0 is the inradius of Ω0. As
H0 = H = 1 we immediately deduce

nV (Ω0) ≤ (1− e−nR0)A(∂Ω0) < A(∂Ω0)

and this precisely contradicts (34).

6.2. Isoperimetric inequality. Note that, by the very definition of the
Cheeger constant, if Ch(M,g) = n, we have that the isoperimetric inequal-
ity (1) is satisfied on M . Conversely, when this inequality holds for each
compact domain in M , we can only conclude the inequality Ch(M,g) ≥ n.
But, if M is an ALH manifold, from the first inequality in Corollary 4, we
have that the corresponding equality is achieved. Thus, we obtain another
characterization of the non-negativity of the conformal infinity of the class
of ALH manifolds that we are studying.
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Corollary 7. Let M be an (n+ 1)-dimensional conformally compact man-
ifold of order Cm,α with m ≥ 3 and 0 < α < 1 whose conformal infinity
is (∂M, [γ]). If its Ricci and scalar curvatures satisfy (29) then we have
Y(∂M, [γ]) ≥ 0 if and only if the isoperimetric inequality

A(∂Ω) ≥ nV (Ω),

holds for any compact domain Ω ⊂M .

In the particular case where the ALH manifold is a hyperbolic manifold,
taking into account the fundamental work [SY, Theorem 4.7] by R. Schoen
and S.-T. Yau about conformally flat manifolds, Theorem 6 allows to de-
cide when the linear hyperbolic isoperimetric inequality remains valid after
quotienting by a Kleinian group.

Corollary 8. Let H
n+1/Γ be a geometrically finite and cusp-free quotient

of the (n+ 1)-dimensional hyperbolic space by a Kleinian group. Denote by
Λ(Γ) ⊂ S

n the limit set of Γ and by H
(

Λ(Γ)
)

its Hausdorff measure. Then
we have

A(∂Ω) ≥ nV (Ω), ∀Ω ⊂ H
n+1/Γ ⇐⇒ H

(

Λ(Γ)
)

≤
n− 2

2
.

6.3. Principal eigenvalue of the p-Laplacian. Another immediate con-
sequence of Theorem 6 is an extension of the result obtained by J. Lee [L]
on the infimum of the L2 spectrum of the Laplacian to the case of the p-
Laplacian. We first briefly recall some well-known facts on this operator
and its principal eigenvalue (for more details we refer to [Mat, SW] and
references therein).

On a Riemannian manifold, for 1 < p < ∞ and u ∈ C∞(M), the p-
Laplacian ∆p is defined by

∆pu = div (|∇u|p−2
g ∇u).

The principal eigenvalue λ1,p(M) of the p-Laplacian is the maximum con-
stant λ such that the equation

∆pu = −λup−1

admits a positive solution. Alternatively, it may be characterized variation-
ally as the best constant in the inequality

λ1,p(M)

∫

M
|v|p ≤

∫

M
|∇v|pg

for any smooth and compactly supported function v on M . From [SW] we
know that if (M,g) is a complete (n+1)-dimensional Riemannian manifold
(M,g) with Ricg + ng ≥ 0, this principal eigenvalue satisfies an inequality
analogous to the famous Cheng inequality for the bottom of the L2 spectrum
of the standard Laplacian, namely

λ1,p(M) ≤
(n

p

)p
. (35)
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On the other hand, we claim that the Cheeger-type inequality

λ1,p(M) ≥
(Ch(M,g)

p

)p
(36)

is also satisfied. Indeed, first note that if (Ωi) is an exhaustion of M by
compact domains, it is straightforward to show that

λ1,p(M) = lim
i→∞

λD1,p(Ωi) (37)

where λD1,p(Ωi) is the first eigenvalue of the p-Laplacian on Ωi with Dirichlet
boundary condition that is

{

∆pvi = −λD1,p(Ωi)vi
vi|∂Ωi

= 0.

Moreover, it is proved in [T] that

λD1,p(Ωi) ≥
(Ch(Ωi)

p

)p
(38)

where Ch(Ωi) is the Cheeger constant of Ωi defined by

Ch(Ωi) = inf
Ω

A(∂Ω)

V (Ω)

where Ω ranges over all smooth compact domain in Ωi and smooth boundary
∂Ω. From the definition (28) of the Cheeger constant ofM it is obvious that
Ch(Ωi) ≥ Ch(M,g) for all i so that (36) follows directly from (37) and (38).
Finally applying Theorem 6 to (36) and combining with (35) indeed leads
to the aforementioned generalization of Lee spectral estimate:

Theorem 9. Let (M,g) be an (n + 1)-dimensional conformally compact
manifold of order Cm,α with m ≥ 3 and 0 < α < 1 whose conformal infinity
is (∂M, [γ]). Suppose that its Ricci and scalar curvatures satisfy (29). For
1 < p <∞, if Y(∂M, [γ]) ≥ 0, then

λ1,p(M) =
(n

p

)p
,

where λ1,p(M) denotes the principal eigenvalue of the p-Laplacian of M .

Remark 4. According to Theorem 9, all the conformally compact mani-
folds (M,g) satisfying Ricg + ng ≥ 0, a second order scalar curvature decay
and Y(∂M, [γ]) ≥ 0, are examples of complete Riemannian manifolds with
optimal Cheeger inequality (36). Instead, the results obtained by D. Sullivan
in [Su] and by R. Schoen and S.-T. Yau in [SY] imply that the geometri-
cally finite and cusp free quotients H

n+1/Γ with n−2
2 < H

(

Λ(Γ)
)

≤ n
2 have

λ1,2(H
n+1/Γ) = n2

4 and Y(Hn+1/Γ) < 0. Then, we deduce from our Theo-

rem 6 that Ch(Hn+1/Γ) < n. Thus these hyperbolic manifolds give examples
of PE spaces where the Cheeger inequality is not sharp.
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[FR] F. Ferrari, A. Rovai, Holography, probe branes and isoperimetric inequalities,
Phys. Letters B 747 (2015), 212–216.

[GL] C. R. Graham, J. M. Lee, Einstein metrics with prescribed conformal infinity
on the ball, Adv. Math. 87 (1991), 186–225.

[GQ] C. Guillarmou, J. Qing, Spectral characterization of Poincaré-Einstein man-
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