Recurrence of 2-dimensional queueing processes, and random walk exit times from the quadrant - Archive ouverte HAL
Article Dans Une Revue The Annals of Applied Probability Année : 2021

Recurrence of 2-dimensional queueing processes, and random walk exit times from the quadrant

Résumé

Let $X = (X_1, X_2)$ be a 2-dimensional random variable and $X(n), n \in \mathbb{N}$ a sequence of i.i.d. copies of $X$. The associated random walk is $S(n)= X(1) + \cdots +X(n)$. The corresponding absorbed-reflected walk $W(n), n \in \mathbb{N}$ in the first quadrant is given by $W(0) = x \in \mathbb{R}_+^2$ and $W(n) = \max \{ 0, W(n-1) - X(n) \}$, where the maximum is taken coordinate-wise. This is often called the Lindley process and models the waiting times in a two-server queue. We characterize recurrence of this process, assuming suitable, rather mild moment conditions on $X$. It turns out that this is directly related with the tail asymptotics of the exit time of the random walk $x + S(n)$ from the quadrant, so that the main part of this paper is devoted to an analysis of that exit time in relation with the drift vector, i.e., the expectation of $X$.
Fichier principal
Vignette du fichier
exit-2019-08-27b.pdf (217.54 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02281986 , version 1 (09-09-2019)

Identifiants

Citer

Marc Peigné, Wolfgang Woess. Recurrence of 2-dimensional queueing processes, and random walk exit times from the quadrant. The Annals of Applied Probability, 2021, ⟨10.1214/20-AAP1654⟩. ⟨hal-02281986⟩
64 Consultations
227 Téléchargements

Altmetric

Partager

More