A survey on Inverse mean curvature flow in ROSSes - Archive ouverte HAL
Article Dans Une Revue Complex Manifolds Année : 2017

A survey on Inverse mean curvature flow in ROSSes

Giuseppe Pipoli
  • Fonction : Auteur

Résumé

We provide a mirror symmetry theorem in a range of cases where the state-of-the-art techniques relying on concavity or convexity do not apply. More specifically, we work on a family of FJRW potentials named after Fan, Jarvis, Ruan, and Witten's quantum singularity theory and viewed as the counterpart of a non-convex Gromov--Witten potential via the physical LG/CY correspondence. The main result provides an explicit formula for Polishchuk and Vaintrob's virtual cycle in genus zero. In the non-concave case of the so-called chain invertible polynomials, it yields a compatibility theorem with the FJRW virtual cycle and a proof of mirror symmetry for FJRW theory.

Dates et versions

hal-02280160 , version 1 (06-09-2019)

Identifiants

Citer

Giuseppe Pipoli. A survey on Inverse mean curvature flow in ROSSes. Complex Manifolds, 2017, 4 (1), pp.2461-2527. ⟨10.1515/coma-2017-0016⟩. ⟨hal-02280160⟩
30 Consultations
0 Téléchargements

Altmetric

Partager

More