Importance Sampling for Deep System Identification - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Importance Sampling for Deep System Identification

Résumé

This paper revisit the methodology of system identification and shows how new paradigms from machine learning can be used to improve the model identification performance in the case of non-linear systems observed with noisy and unbalanced dataset. We prove that using importance sampling schemes in system identification can provide significant performance boost on a wide variety of systems, in particular when some of the system dynamic is only exhibited by relatively rare events. The performance of the approaches is evaluated on a real and simulated drone and two standard datasets from real robotic systems. Our approach consistently outperforms baseline approaches on these datasets, all the more when the datasets are noisy and unbalanced.
Fichier principal
Vignette du fichier
RAL-IROS.pdf (146.64 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02278171 , version 1 (04-09-2019)

Identifiants

Citer

Antoine Mahé, Antoine Richard, Benjamin Mouscadet, Cedric Pradalier, Matthieu Geist. Importance Sampling for Deep System Identification. 19th International Conference on Advanced Robotics (ICAR), 2019, Belo Horizonte, Brazil. ⟨10.1109/ICAR46387.2019.8981590⟩. ⟨hal-02278171⟩
209 Consultations
414 Téléchargements

Altmetric

Partager

More