Distance transform regression for spatially-aware deep semantic segmentation - Archive ouverte HAL
Article Dans Une Revue Computer Vision and Image Understanding Année : 2019

Distance transform regression for spatially-aware deep semantic segmentation

Résumé

Understanding visual scenes relies more and more on dense pixel-wise classification obtained via deep fully convolutional neural networks. However, due to the nature of the networks, predictions often suffer from blurry boundaries and ill-segmented shapes, fueling the need for post-processing. This work introduces a new semantic segmentation regularization based on the regression of a distance transform. After computing the distance transform on the label masks, we train a FCN in a multi-task setting in both discrete and continuous spaces by learning jointly classification and distance regression. This requires almost no modification of the network structure and adds a very low overhead to the training process. Learning to approximate the distance transform back-propagates spatial cues that implicitly regularizes the segmentation. We validate this technique with several architectures on various datasets, and we show significant improvements compared to competitive baselines.
Fichier principal
Vignette du fichier
ycviu-template-with-authorship.pdf (4.52 Mo) Télécharger le fichier
ycviu-template-with-authorship.brf (5.47 Ko) Télécharger le fichier
ycviu-template-with-authorship.fdb_latexmk (25.66 Ko) Télécharger le fichier
ycviu-template-with-authorship.fls (20.75 Ko) Télécharger le fichier
ycviu-template-with-authorship.spl (0 B) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02277621 , version 1 (03-09-2019)

Identifiants

Citer

Nicolas Audebert, Alexandre Boulch, Bertrand Le Saux, Sébastien Lefèvre. Distance transform regression for spatially-aware deep semantic segmentation. Computer Vision and Image Understanding, 2019, 189, pp.102809. ⟨10.1016/j.cviu.2019.102809⟩. ⟨hal-02277621⟩
258 Consultations
331 Téléchargements

Altmetric

Partager

More