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Distance transform regression for spatially-aware deep semantic segmentation

Nicolas Audebert®”*, Alexandre Boulch?, Bertrand Le Saux?®, Sébastien LefévreP

“DTIS, ONERA, Université Paris Saclay, F-91123 Palaiseau - France
bUniv. Bretagne-Sud, UMR 6074, IRISA, F-56000 Vannes, France

ABSTRACT

Understanding visual scenes relies more and more on dense pixel-wise classification obtained
via deep fully convolutional neural networks. However, due to the nature of the networks,
predictions often suffer from blurry boundaries and ill-segmented shapes, fueling the need for
post-processing. This work introduces a new semantic segmentation regularization based on
the regression of a distance transform. After computing the distance transform on the label
masks, we train a FCN in a multi-task setting in both discrete and continuous spaces by
learning jointly classification and distance regression. This requires almost no modification
of the network structure and adds a very low overhead to the training process. Learning to
approximate the distance transform back-propagates spatial cues that implicitly regularizes
the segmentation. We validate this technique with several architectures on various datasets,
and we show significant improvements compared to competitive baselines.

(© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Semantic segmentation is a task that is of paramount importance for visual scene understanding. It is often used as
the first layer to obtain representations of a scene with a high level of abstraction, such as listing objects and their shapes.
Fully Convolutional Networks (FCNs) have proved themselves to be very effective for semantic segmentation of all kinds
of images, from multimedia images Everingham et al. (2014) to remote sensing data Rottensteiner et al. (2012), medical
imaging Ulman et al. (2017) and autonomous driving Cordts et al. (2016). However, a recurrent issue often raised by the
practitioners is the fact that FCN tend to produce blurry or noisy segmentations, in which spatial transitions between
classes are not as sharp as expected and objects sometimes lack connectivity or convexity, and therefore the results
need to be regularized using some post-processing Zheng et al. (2015); Chen et al. (2018). This has led the computer
vision community to investigate many post-processing and regularization techniques to sharpen the visual boundaries

and enforce spatial smoothness in semantic maps inferred by FCN. Yet these methods are often either graphical models
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added on top of deep neural networks Liu et al. (2018); Zheng et al. (2015) or based on sophisticated prior knowledge Le
et al. (2018); Bertasius et al. (2016). In this work, we propose a much straightforward approach by introducing a simple
implicit regularization embedded in the network loss function. We consider the distance transform of the segmentation
masks in a regression problem as a proxy for the semantic segmentation task. The distance transform is a continuous
representation of the label masks, where one pixel becomes represented not only by its belonging to a class, but by its
spatial proximity to all classes. This means that the gradient back-propagated contains more information about the
underlying spatial structure of the data compared to traditional classification. As such, the network learns a smoother
segmentation with a very low complexity overhead. Moreover, this is straightforward to implement and does not rely on
any additional priors, but only on an alternative representation of the ground truth. Therefore any deep segmentation
architecture can be adapted in this fashion without any structural alteration. We validate our method with several
architectures on diverse application domains on which we obtain significant improvements w.r.t strong baselines: urban

scene understanding, RGB-D images and Earth Observation.

2. Related work

Semantic segmentation is a longstanding task in the computer vision community. Several benchmarks have been
introduced on many application domains such as COCO Lin et al. (2014) and Pascal VOC Everingham et al. (2014)
for multimedia images, CamVid Brostow et al. (2009) and Cityscapes Cordts et al. (2016) for autonomous driving, the
ISPRS Semantic Labeling Rottensteiner et al. (2012) and INRIA Aerial Image Labeling Maggiori et al. (2017) datasets
for aerial image, and medical datasets Ulman et al. (2017), which are now dominated by the deep fully convolutional
networks. Many applications rely on a pixel-wise semantic labeling to perform scene understanding, such as object-
instance detection and segmentation He et al. (2017); Arnab and Torr (2017) in multimedia images, segment-before-
detect pipelines for remote sensing data processing Audebert et al. (2017); Sommer et al. (2017) and segmentation of
medical images for neural structure detection and gland segmentation Ronneberger et al. (2015); Chen et al. (2016a).

State-of-the-art architectures are all derived from the Fully Convolutional Network paradigm Long et al. (2015),
which introduced the possibility to perform pixel-wise classification using convolutional networks that were previously
restricted to image-wide classification. Many models building upon this idea were then proposed, e.g. DeepLab Chen
et al. (2018), dilated convolutional networks Yu and Koltun (2015) or auto-encoder inspired architectures such as Seg-
Net Badrinarayanan et al. (2017) and U-Net Ronneberger et al. (2015). The introduction of the residual learning
framework He et al. (2016) also introduced many new models for semantic segmentation, most notably the PSPNet Zhao

et al. (2017) that incorporates multi-scale context in the final classification using a pyramidal module.
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However, one common deficiency of the FCNs is the lack of spatial-awareness that adversely affects the classification
maps and makes spatial regularization a still active field of research Garcia-Garcia et al. (2017). Indeed, predictions often
tend to be blurry along the object edges. As FCN perform pixel-wise classification where all pixels are independently
classified, spatial structure is fundamentally implicit and relies only on the use of convolutional filters. Although this has
given excellent results on many datasets, this often leads to noisy segmentations, where artifacts might arise in the form
of a lack of connectivity of objects and even salt-and-pepper noise in the classifications. Those problems are especially
critical in remote sensing applications, in which most objects are fundamentally groups of convex structures and where
connectivity and inter-class transitions are a requirement for better mapping.

To address this issue, several approaches for smoothing have been suggested. Graphical models methods, such as
dense Conditional Random Fields (CRF), have been used to spatially regularize the segmentation and sharpen the
boundaries as a post-processing step Lin et al. (2016). However, this broke the end-to-end learning paradigm, and led
to several reformulations in order to couple more tightly the graphical models with deep networks. To this end, Zheng
et al. (2015); Liu et al. (2018) rewrote respectively the Conditional Random Field (CRF) and the Markov Random Field
(MRF) graphical models as trainable neural networks. In a similar concept, Le et al. (2018) reformulates the Variational
Level Set method to solve it using an FCN, while Chen et al. (2016b) uses CNN to perform domain transform filtering.
Those methods all are revisiting traditional vision techniques adapted to fit into the deep learning framework. However,
they require heavy network modification and are computationally expensive.

A more straightforward strategy consists in performing a data-driven regularization by enforcing new constraints
on the model in the form a special loss penalty. Notably, this area has been investigated in the literature for edge
detection Yang et al. (2016). For instance, Kokkinos (2015); Bertasius et al. (2016) introduce a carefully crafted loss
especially tailored for object boundary detection. CASENet Yu et al. (2017) tries to leverage semantics-related priors
into the edge prediction task by learning the classes that are adjacent to each boundary, while the COB strategy Maninis
et al. (2018) incorporates geometric cues by predicting oriented boundaries. Multi-scale approaches such as Liu et al.
(2017) tune the network architecture to fuse activations from multiple layers and improve edge prediction by mixing low
and high-level features. In the case of semantic segmentation, object shapes benefit from a better spatial regularity as
most shapes are often clean, closed sets. Therefore, better boundaries often help by closing the contours and removing
classification noise. To this end, models such as DeepContours Shen et al. (2015) explicitly learn both the segmentation
and the region boundaries using a multi-task hand-crafted loss. A similar approach with an ensemble of models has

been suggested in Marmanis et al. (2017), especially tailored for aerial images. Chen et al. (2016a); Cheng et al. (2017)



(a) Car segmentation binary mask. (b) Signed distance transform (SDT). (c) Truncated and normalized SDT.

Fig. 1: Different representations of a segmentation label.

still use a multi-task loss with explicit edge detection, but also fuse feature maps from several layers for more precise
boundaries, with applications in gland segmentation and aerial image labeling, respectively. The SharpMask Pinheiro
et al. (2016) approach uses a multi-stage network to successively learn refinements of the segmented shapes.

These methods all try to alleviate the classification noise by incorporating spatial-awareness in the semantic seg-
mentation pipeline. However, they share a common drawback as they introduce an explicit hand-crafted loss term to
sharpen boundaries and spatially regularize the segmentation, either in the form of a regularization loss penalty, a heavy
network modification or a graphical model post-processing. This stems from the fact that segmentation labels are often
an aggregation of binary masks that have a low spatial-expressiveness. In Hayder et al. (2017), a distance transform was
introduced to allow an instance segmentation to infer shapes outside the original bounding box of the object. Indeed,
the distance transform conveys proximity meaning along the edges and even further. This allows the network to learn
more precise information than only “in” or “out” as would do one-hot encoding and therefore feeds cues about the spatial
structure to the network.

Inspired by this recent idea, we introduce a distance transform regression loss in a multi-task learning framework,
which acts as a natural regularizer for semantic segmentation. This idea was tested independently from us in Bischke et al.
(2017), although only for building footprint extraction using a quantized distance transform that was roughly equivalent
to standard multi-class classification task. Our method is simpler as it directly works on the distance transform using a
true regression. While previous methods brought additional complexity, either in the form of a hand-crafted loss function
or an alternative network design, our approach remains straightforward and fully data-driven. It requires nearly almost
no network modification as it only adds a regression target, in the form of the distance transformed labels, to the original

classification task.



3. Distance transform regression

In this work, we suggest to use the signed distance transform (SDT) to improve the learning process of semantic
segmentation models. The SDT transforms binary sparse masks into equivalent continuous representations. We argue
that this representation is more informative for training deep networks as one pixel now owns a more precise representation
of its spatial proximity with various semantic classes. We show that using a multi-task learning framework, we can train a
FCN to perform both semantic segmentation by traditional classification and SDT regression, and this helps the network
infer better structured semantic maps.

3.1. Signed-distance transform

We use the signed distance transform (SDT) Ye (1988), which assigns to each pixel of the foreground its distance to
the closest background point, and to each pixel of the background the opposite of its distance to the closest foreground
point. If x; ; are the input image pixel values and M the foreground mask, then the pixels d; ; of the distance map are

obtained with the following equation:

Vi g, di;— +mm2¢M(|| Tij — 2 ||), if Tij € M, (1)
o mineen (| @i — 2 1), ifay ¢ M.

Considering that semantic segmentation annotations can be interpreted as binary masks, with one mask per class, it
is possible to convert the labels into their signed-distance transform counterparts. In this work, we apply class-wise the
signed Euclidean distance transform to the labels using a linear time exact algorithm Maurer et al. (2003).

In order to avoid issues where the nearest point is outside the receptive field of the network, we clip the distance to
avoid long-range spatial dependencies that would go out of the network field-of-view. The clipping value is set globally
for all classes. We then normalize the SDTs of each class to constrain them in the [—1;1] range. This can be seen as
feeding the SDT into a non-linear saturating activation function hardtanh. The visual representations are illustrated
in Fig. 1. The same processing is applied to the distances estimated by the network.

3.2. Multi-task learning

Signed distance transform maps are continuous representations of the labels (classes). We can train a deep network
to approximate these maps using a regression loss.

However, preliminary experiments show that training only for regression does not bring any improvement compared
to traditional classification and even degrades the results. Therefore, we suggest to use a multi-task strategy, in which
the network learns both the classification on the usual one-hot labels and the regression on all SDTs. More precisely, we

alter the network to first predict the SDTs and we then use an additional convolutional layer to fuse the last layer features
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Fig. 2: Multi-task learning framework by performing both distance regression and pixel-wise classification. Convolutional layers are in blue
and non-linear activations are in green, while feature maps are in brown.

and the inferred SDTs to perform the final classification. In this way, the network is trained in a cascaded multi-task
fashion, where the distance transform regression is used as a proxy, i.e. an intermediate task, before classification.

Therefore, the network modification can be summarized as follows. Instead of using the last layer and feeding it
into a softmax, we now use the last layer as a distance prediction. As distances are normalized between -1 and 1, these
distances pass through a hardtanh non-linearity. Then, we concatenate the previous layer features maps and the distance
predictions to feed both into a convolutional and a softmax layer. The complete architecture is illustrated in Fig. 2.

In this work, we keep the traditional cross-entropy loss for classification, in the form of the negative log-likelihood
(NLL). As our regression results are constrained in [—1;1], we use the L1 loss to preserve relative errors.

Assuming that Zseg, Zaist, Yseg, Yaist respectively denote the output of the segmentation softmax, the regressed dis-

tance, the ground truth segmentation labels and the ground truth distances, the final loss to be minimized is:
L = NLLL0$5(Zseq, Yseq) + AL1(Zgist, Yaist) (2)

where A is an hyper-parameter that controls the strength of the regularization.

4. Experiments

4.1. Baselines

We first obtain baseline results on various datasets using SegNet or PSPNet for semantic segmentation, either using
the cross entropy for label classification or the L1 loss for distance regression. However, note that our method is not
architecture-dependent. It consists in a straightforward modification of the end of the network that would fit any
architecture designed for semantic segmentation.

SegNet Badrinarayanan et al. (2017) is a popular architecture for semantic segmentation, originally designed for
autonomous driving. It is designed around a symmetrical encoder-decoder architecture based on VGG-16 Simonyan and

Zisserman (2015). The encoder results in downsampled feature maps at 1:32 resolution. These maps are then upsampled
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and projected in the label space by the decoder using unpooling layer. The unpooling operation replaces the decoded
activations into the positions of the local maxima computed in the encoder maxpooling layers.

PSPNet Zhao et al. (2017) is a recent model for semantic segmentation that achieved new state-of-the-art results on
several datasets Cordts et al. (2016); Everingham et al. (2014). It is based on the popular ResNet He et al. (2016) model
and uses a pyramidal module at the end to incorporate multi-scale contextual cues in the learning process. In our case,
we use PSPNet, that encodes the input into feature maps at 1:32 resolution, which are then upsampled using transposed
convolutions.

4.2. Datasets
We validate our method on several datasets in order to show its generalization capacity on multi and mono-class

segmentation of both ground and aerial images.

ISPRS 2D Semantic Labeling. The ISPRS 2D Semantic Labeling Rottensteiner et al. (2012) datasets consist in two sets
of aerial images. The Vaihingen scene is comprised of 33 infrared-red-green (IRRG) tiles with a spatial resolution of
9cm/px, with an average size of 2000 x 1500px. Dense annotations are available on 16 tiles for six classes: impervious
surfaces, buildings, low vegetation, trees, cars and clutter, although the latter is not included in the evaluation process.
The Potsdam scene is comprised of 38 infrared-red-green-blue (IRRGB) tiles with a spatial resolution of 5cm/px and
size of 6000 x 6000px. Dense annotations for the same classes are available on 24 tiles. Evaluation is done by splitting

the datasets with a 3-fold cross-validation.

INRIA Aerial Image Labeling Benchmark. The INRIA Aerial Image Labeling dataset Maggiori et al. (2017) is comprised
of 360 RGB tiles of 5000 x 5000px with a spatial resolution of 30cm/px on 10 cities across the globe. Half of the cities
are used for training and are associated to a public ground truth of building footprints. The rest of the dataset is used

only for evaluation with a hidden ground truth.

SUN RGB-D. The SUN RGB-D dataset Song et al. (2015) is comprised of 10,335 RGB-D images of indoor scenes
acquired from various sensors, each capturing a color image and a depth map. These images have been annotated for

YRS

37 semantic classes such as “chairs”, “floor”, “wall” or “table”, with a few pixels unlabeled.

Data Fusion Contest 2015. The Data Fusion Contest 2015 Campos-Taberner et al. (2016) is comprised of 7 aerial RGB
images of 10,000 x 10,000px with a spatial resolution of 5cm/px on the city of Zeebruges, Belgium. A dense set of
annotations on 8 classes (6 from ISPRS dataset plus “water” and “boat”) is given. Two images are reserved for testing,

we use one image for validation and the rest for training.
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CamVid. The CamVid dataset Brostow et al. (2009) is comprised of 701 fully annotated still frames from urban driving
videos, with a resolution of 360 x 480px. We use the same split as in Badrinarayanan et al. (2017), i.e. 367 training
images, 101 validation images and 233 test images. The ground truth covers 11 classes relevant to urban scene labeling,
such as “building”, “road”, “car”, “pedestrian” and “sidewalk”. A few pixels are assigned to a void class that is not

evaluated.

4.3. Experimental setup

We experiment with the SegNet and PSPNet models.

SegNet is trained for 50 epochs with a batch size of 10. Optimization is done using Stochastic Gradient Descent
(SGD) with a base learning rate of 0.01, divided by 10 after 25 and 45 epochs, and a weight decay set at 0.0005. Encoder
weights are initialized from VGG-16 Simonyan and Zisserman (2015) trained on ImageNet Deng et al. (2009), while
decoder weights are randomly initialized using the policy from He et al. (2015). For SUN RGB-D, in order to validate
our method in a multi-modal setting, we use the FuseNet Hazirbas et al. (2016) architecture. This model consists in
a dual-stream SegNet that learns a joint representation of both the color image and the depth map. We train it using
SGD with a learning rate of 0.01 on resized 224 x 224 images. On aerial datasets, we randomly extract 256 x 256 crops
(384 x 384 on the INRIA Labeling dataset), augmented with flipping and mirroring. Inference is done using a sliding
window of the same shape with a 75% overlap.

We train a PSP-Net on CamVid for 750 epochs using SGD with a learning rate of 0.01, divided by 10 at epoch 500,
a batch size of 10 and a weight decay set at 0.0005. We extract random 224 x 224 crops from the original images and we
perform random mirroring to augment the data. We fine-tune on full scale images for 200 epochs, following the practice
from Jégou et al. (2017). Our implementation of PSPNet is based on ResNet-50 pre-trained on ImageNet and does not
use the auxiliary classification loss for deep supervision Zhao et al. (2017).

Finally, we use median-frequency balancing to alleviate the class unbalance from SUN RGB-D and CamVid.

For a fair comparison, the same additional convolutional layer required by our regression is added to the previous
classification baselines, so that both models have the same number of parameters.

All experiments are implemented using the PyTorch library noa (2016). SDT is computed on CPU using the Scipy
library Jones et al. (2001) and cached on-memory or on-disk, which slows down training during the first epoch and
uses system resources. Online SDT computation using a fast GPU implementation Zampirolli and Filipe (2017) would

strongly alleviate those drawbacks.



Method Dataset OA Roads Buildings  Low veg. Trees Cars
SegNet (SDT regression) 89.49 91.03 95.60 81.23 88.31 0.00
SegNet (classification) Vaihingen 90.11 + 0.1191.31 + 0.14 95.59 + 0.14 78.43 + 0.2289.99 + 0.14 82.37 +

1.05

SegNet (+ SDT) 90.31 + 91.55 + 95.75 + 78.80 + 90.10 £ 81.59 £ 0.71

0.12 0.24 0.21 0.35 0.11

SegNet (classification) Potsdam 91.85 94.12 96.09 88.48 85.44 96.62
SegNet (+SDT) 92.22 94.33 96.52 88.55 86.55 96.79

Table 1: Results on the ISPRS datasets. F1 scores per class and overall accuracy (OA) are reported.

(a) IRRG image (b) Ground truth ) SegNet clasmﬁcatlon) (d) SegNet (multi-task)

Fig. 3: Excerpt of the results on the ISPRS Vaihingen dataset. Legend: white: impervious surfaces, blue: buildings, cyan: low
vegetation, green: trees, : vehicles, red: clutter, black: undefined.

4.4. Results

ISPRS dataset. The cross-validated results on the ISPRS Vaihingen and Potsdam datasets are reported in Table 1. For
Vaihingen dataset, the validation set comprises 4 images out of 16 and 5 images out of 24 for Potsdam. All classes
seem to benefit from the distance transform regression. On Potsdam, the class “trees” is significantly improved as the
distance transform regression forces the network to better learn its closed shape, despite the absence of leaves that make
the underlying ground visible from the air. Two example tiles are shown in Fig. 3 and Fig. 4, where most buildings
strongly benefit from the distance transform regression, with smoother shapes and less classification noise. Moreover, we
also tested to perform regression only on the Vaihingen dataset, which slightly improved the results on several classes,
although it missed all the cars and had a negative impact overall. It is also worth noting that our strategy succeeds

while CRF did not improve classification results on this dataset as reported in Marmanis et al. (2017).

INRIA Aerial Image Labeling Benchmark. The results on the test set of the INRIA Aerial Image Labeling benchmark
are reported in Table 2. Our results are competitive with those from other participants to the contest. Using the distance

transform regression improves the intersection over union (IoU) by 0.47 and makes many errors disappear. As shown
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(c) SegNet (classification) (d) SegNet (multi-task)

Fig. 4: Excerpt of the results on the ISPRS Potsdam dataset. Legend: white: impervious surfaces, blue: buildings, cyan: low vegetation,
green: trees, : vehicles, red: clutter, black: undefined.

Method Bellingham Bloomington Innsbruck San East Tyrol IoU OA
Francisco

Inrial 52.91 46.08 58.12 57.84 59.03 55.82 93.54

Inria2 56.11 50.40 61.03 61.38 62.51 59.31 93.93
TeraDeep 58.08 53.38 59.47 64.34 62.00 60.95 94.41
RMIT 57.30 51.78 60.70 66.71 59.73 61.73 94.62

Raisa Energy 64.46 56.63 66.99 67.74 69.21 65.94 94.36
DukeAMLL 66.90 58.48 69.92 75.54 72.84 70.91 95.70
NUS 65.36 58.50 68.45 71.17 71.58 68.36 95.18
SegNet* (classification) 63.42 62.74 63.77 66.53 65.90 65.04 94.74
SegNet* (4SDT) 68.92 68.12 71.87 71.17 74.75 71.02 95.63

Table 2: Results on the test set of the INRIA Aerial Image Labeling Benchmark when our results were submitted (11/14/17). The multi-task
framework consistently improves the standard SegNet results. We report the overall accuracy (OA) and the intersection over union (IoU) for
each city. Best results are in bold, second best are in italics.

Method IoU (val) OA (val)
SegNet Bischke et al. (2017) 72.57 95.66
SegNet (multi-task) Bischke et al. (2017) 73.00 95.73
SegNet* (classification) 73.70 95.91
SegNet* (4SDT) 74.17 96.03

Table 3: Results on the validation set of the INRIA Aerial Image Labeling Benchmark for comparison to Bischke et al. (2017). We report the
overall accuracy (OA) and the intersection over union (IoU).
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(b) Ground truth (c) SegNet (standard) (d) SegNet (multi-task)

Fig. 5: Excerpt of the results on the INRIA Aerial Image Labeling dataset. Correctly classified pixels are in green, false positive are in
and false negative are in blue. The multi-task framework allows the network to better capture the spatial structure of the buildings.
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Fig. 6: Excerpt of the results on the INRIA Aerial Image Labeling test set. The multi-task framework filters out noisy predictions and cleans
the predictions. Its effect is visible at multiple scales, both on a single building (more accurate shape) and on large areas (reduces the number
of false positive buildings).

in Fig. 5, multi-task prediction yields more regular building shapes and no mis-classified "holes" within the building

inner part. Although no additional buildings are detected, those that were already segmented become cleaner. Note
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Model OA AloU AP

DFCN-DCRF Jiang et al. (2017) 76.6 39.3 50.6
3D Graph CNN Qi et al. (2017) - 42.0 55.2
3D Graph CNN Qi et al. (2017) (MS) - 43.1 55.7
FuseNet* Hazirbas et al. (2016) 76.8 39.0 55.3
FuseNet* (+SDT) 77.0 38.9 56.5

Table 4: Results on the SUN RGB-D dataset on 224 x 224 images. We report the overall accuracy, average intersection over union (AloU)
and average precision (AP). We retrained our own reference FuseNet. Best results are in bold, second best are in italics.

Method OA  Roads Buildings Low veg. Trees Cars Clutter Boat  Water
AlexNet 83.32  79.10 75.60 78.00 79.50  50.80 63.40 44.80  98.20
(patch) Campos-Taberner et al.
(2016)
SegNet (classification) 86.67 84.05 82.21 82.24 69.10  79.27 65.78 56.80 98.93
SegNet (+SDT) 87.31 84.04 81.71 83.88 80.04 80.27 69.25 50.83 98.94

Table 5: Results on the Data Fusion Contest 2015 dataset. We report F1 scores per class and the overall accuracy (OA).

that several missing buildings are actually false positive in the ground truth. We also present a comparison to another
multi-task approach which uses a distance transform Bischke et al. (2017) in table 3, this time on their custom validation

set. It shows that regression on SDT is better than SDT discretization followed by classification.

SUN RGB-D. We report in Table 4 test results on the SUN RGB-D dataset. Switching to the multi-task setting improves
the overall accuracy and the average precision by respectively 0.33 and 1.06 points, while very slightly decreasing the
average loU. This shows that the distance transform regression also generalizes to a multi-modal setting on a dual-stream
network. Note that this result is competitive with the state-of-the-art 3D Graph CNN from Qi et al. (2017) that leverages

3D cues.

Data Fusion Contest 2015. Table 5 details the results on the Data Fusion Contest 2015 dataset compared to the best
result from the original benchmark Campos-Taberner et al. (2016). Most classes benefit from the distance transform
regression, with the exception of the “boat” class. The overall accuracy is improved by 0.64% in the multi-task setting.
Similarly to the Potsdam dataset, trees and low vegetation strongly benefit from the distance transform regression.
Indeed, vegetation is often annotated as closed shapes even if it is possible to see what lies underneath. Therefore, filter
responses to the pixel spectrometry can be deceptive. Learning distances forces the classifier to integrate spatial features

into the decision process.

CamVid. The test results on the CamVid dataset are reported in Table 6 that also includes a comparison with other
methods from the state-of-the-art, notably Jégou et al. (2017). We report here the results obtained by training two archi-

tectures: a deeper PSPNet Zhao et al. (2017) based on ResNet-101 He et al. (2016) and a fully convolutional DenseNet



13

Model mloU OA Building Tree Sky Car Sign Road Pedest. Fence Pole Sidewalk Cyclist

SegNet Badrinarayanan et al. (2017) 46.4 62.5 68.7 52.0 87.0 58.5 13.4 86.2 25.3 179 16.0 60.5 24.8
DeepLab Chen et al. (2018) 61.6 -  81.5 74.6 89.082.2423 92.2 484 272 143 754  50.1
Tiramisu Jégou et al. (2017) 589 88.9 776 720924 732 318 92.8 379 262 32.6 79.9 311
Tiramisu Jégou et al. (2017) 66.9 91.5 83.0 77.393.0 77.3 45.9 94.5 59.6 37.1 37.8 82.2 50.5

PSPNet-50* (classif.) 60.2 89.9 76.3 67.7 89.2 71.0 37.8 91.5 44.0 33.7 26.9 76.6 474
PSPNet-50* (+ SDT) 60.7 90.1 76.9 69.7 88.7 72.7 38.1 90.6 44.0 36.6 27.1 75.6  47.7
PSPNet-50* (4 mask) 60.0 89.8 75.6 67.1 89.6 71.4 37.3 92.8 44.4 36.1 27.6 757  42.6
""" PSPNet101* (classif.) —  60.3 89.3 747 64.1 89.0 71.8 36.6 90.8 445 385 254 774  50.5
PSPNet101* (+ SDT) 62.2 90.0 76.2 66.4 88.8 78.0 37.6 90.7 47.2 40.1 28.6 78.9  51.2
""" DenseUNet* (classif.) ~ 59.5 89.6 75.8 68.6 90.9 75.3 37.3 90.0 42.1 265 30.1 741  43.7
DenseUNet* (4 SDT) 61.6 90.6 775 69.7 91.1 78.9 44.0 90.7 46.9 23.7 31.6 774  46.2

Table 6: Results on CamVid reporting Intersection over Union (IoU) per class, the mean IoU (mIoU) and the overall accuracy (OA). Models
with an “*” are ours. The top part of the table shows several state-of-the-art methods, while the bottom part shows ho