Feasibility Analysis For Constrained Model Predictive Control Based Motion Cueing Algorithm - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Feasibility Analysis For Constrained Model Predictive Control Based Motion Cueing Algorithm

Résumé

This paper deals with motion control for an 8-degree-of-freedom (DOF) high performance driving simulator. We formulate a constrained optimal control that defines the dynamical behavior of the system. Furthermore, the paper brings together various methodologies for addressing feasibility issues arising in implicit model predictive control-based motion cueing algorithms. The implementation of different techniques is described and discussed subsequently. Several simulations are carried out in the simulator platform. It is observed that the only technique that can provide ensured closed-loop stability by assuring feasibility over all prediction horizons is a braking law that basically saturates the control inputs in the constrained form.
Fichier principal
Vignette du fichier
LISPEN_ICRA_2019_RENGIFO.pdf (886.64 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02275382 , version 1 (30-08-2019)

Identifiants

  • HAL Id : hal-02275382 , version 1

Citer

Carolina Rengifo, Jean-Remy Chardonnet, Hakim Mohellebi, Damien Paillot, Andras Kemeny. Feasibility Analysis For Constrained Model Predictive Control Based Motion Cueing Algorithm. 2019 International Conference on Robotics and Automation (ICRA), May 2019, Montréal, Canada. pp.2076-2082. ⟨hal-02275382⟩
67 Consultations
109 Téléchargements

Partager

More