q-DEFORMED RATIONALS AND q-CONTINUED FRACTIONS - Archive ouverte HAL
Article Dans Une Revue Forum of Mathematics, Sigma Année : 2020

q-DEFORMED RATIONALS AND q-CONTINUED FRACTIONS

Résumé

We introduce a notion of q-deformed rational numbers and q-deformed continued fractions. A q-deformed rational is encoded by a triangulation of a polygon and can be computed recursively. The recursive formula is analogous to the q-deformed Pascal identitiy for the Gaussian binomial coefficients, but the Pascal triangle is replaced by the Farey graph. The coefficients of the polynomials defining the q-rational count quiver subrepresentations of the maximal indecomposable representation of the graph dual to the triangulation. Several other properties, such as total positivity properties, q-deformation of the Farey graph, matrix presentations and q-continuants are given, as well as a relation to the Jones polynomial of rational knots.
Fichier principal
Vignette du fichier
qRational_2.pdf (483.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02270545 , version 1 (26-08-2019)

Identifiants

Citer

Sophie Morier-Genoud, Valentin Ovsienko. q-DEFORMED RATIONALS AND q-CONTINUED FRACTIONS. Forum of Mathematics, Sigma, 2020, 8, pp.e13. ⟨10.1017/fms.2020.9⟩. ⟨hal-02270545⟩
234 Consultations
280 Téléchargements

Altmetric

Partager

More