Pr 3+ doping at the A-site of La 0.67 Ba 0.33 MnO 3 nanocrystalline material: assessment of the relationship between structural and physical properties and Bean–Rodbell model simulation of disorder effects - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue RSC Advances Année : 2019

Pr 3+ doping at the A-site of La 0.67 Ba 0.33 MnO 3 nanocrystalline material: assessment of the relationship between structural and physical properties and Bean–Rodbell model simulation of disorder effects

Résumé

Bulk nanocrystalline samples of (La1−xPrx)0.67Ba0.33MnO3 (0.075 ≤ x ≤ 0.30) manganites with a fixed carrier concentration are prepared by the sol–gel based Pechini method. Rietveld refinement of the X-ray diffraction patterns, shows the formation of single-phase compositions with rhombohedral symmetry. Upon Pr3+ doping at the A-site, the unit cell volume and the B–O–B bond angles are reduced. FTIR spectra present a prominent absorption peak of the in-phase stretching mode (B2g mode) rising from the vibration of the Mn–O bond. Raman spectra at room temperature reveal a gradual shift toward lower frequencies in (Eg) phonon mode with increasing Pr3+ concentration. The M(T) measurements shows a clear ferromagnetic (FM)–paramagnetic (PM) phase transition with increasing temperature. An increase in resistivity and activation energy and a decrease in the metal–semiconductor transition (TM–SC) and Curie temperatures (TC) was observed as a consequence of Pr3+ doping. The results are discussed according to the change of A-site-disorder effect caused by the systematic variations of the A-site average ionic radius 〈rA〉 and A-site-cation mismatch σ2, resulting in the narrowing of the bandwidth and the decrease of the mobility of eg electrons. The magneto-transport behavior in the whole measured temperature and a magnetic field can be described by a percolation model, which is in agreement with the limited experimental data of the samples for x = 0.075, 0.15 and 0.30. The experimental results confirm that A-site substitution with Pr3+ destroys the Mn3+–O2−–Mn4+ bridges and weakens the double exchange (DE) interaction between the Mn3+ (t32ge1g, S = 2) and Mn4+ (t32ge0g, S = 3/2) ions. On the other hand, the Bean and Rodbell model has been successfully used to simulate the magnetization data of the samples with x = 0.15 and x = 0.22. The random replacement of La3+ by Pr3+ is shown to induce more disorder in the system, which is reflected in the increase of the fitted disorder parameter and spin value fluctuation. At a temperature close to room temperature, the maximum magnetic entropy change (ΔSMax) and the relative cooling power (RCP) of La0.52Pr0.15Ba0.33MnO2.98 are found to be, respectively, 1.34 J kg−1 K−1 and 71 J kg−1 for a 1.5 T field change.
Fichier principal
Vignette du fichier
c9ra03494c.pdf (2.06 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-02266701 , version 1 (24-08-2023)

Identifiants

Citer

Ma. Oumezzine, Herbet Bezerra Sales, Ahmed Selmi, E. K. Hlil. Pr 3+ doping at the A-site of La 0.67 Ba 0.33 MnO 3 nanocrystalline material: assessment of the relationship between structural and physical properties and Bean–Rodbell model simulation of disorder effects. RSC Advances, 2019, 9 (44), pp.25627-25637. ⟨10.1039/C9RA03494C⟩. ⟨hal-02266701⟩

Collections

UGA CNRS NEEL
21 Consultations
8 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More