Deep frame interpolation for video compression - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Deep frame interpolation for video compression

Résumé

Deep neural networks have been recently proposed to solve video interpolation tasks. Given a past and future frame, such networks can be trained to successfully predict the intermediate frame(s). In the context of video compression, these architectures could be useful as an additional inter-prediction mode. Current inter-prediction methods rely on block-matching techniques to estimate the motion between consecutive frames. This approach has severe limitations for handling complex non-translational motions, and is still limited to block-based motion vectors. This paper presents a deep frame interpolation network for video compression aiming at solving the previous limitations, i.e. able to cope with all types of geometrical deformations by providing a dense motion compensation. Experiments with the classical bi-directional hierarchical video coding structure demonstrate the efficiency of the proposed approach over the traditional tools of the HEVC codec.
Fichier principal
Vignette du fichier
BegaintGGG19.pdf (2.32 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02202172 , version 1 (31-07-2019)

Identifiants

Citer

Jean Bégaint, Franck Galpin, Philippe Guillotel, Christine Guillemot. Deep frame interpolation for video compression. DCC 2019 - Data Compression Conference, Mar 2019, Snowbird, United States. pp.1-10, ⟨10.1109/DCC.2019.00068⟩. ⟨hal-02202172⟩
307 Consultations
724 Téléchargements

Altmetric

Partager

More