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Abstract

Deep neural networks have been recently proposed to solve video interpolation tasks.
Given a past and future frame, such networks can be trained to successfully predict the
intermediate frame(s). In the context of video compression, these architectures could be
useful as an additional inter-prediction mode. Current inter-prediction methods rely on
block-matching techniques to estimate the motion between consecutive frames. This ap-
proach has severe limitations for handling complex non-translational motions, and is still
limited to block-based motion vectors. This paper presents a deep frame interpolation net-
work for video compression aiming at solving the previous limitations, i.e. able to cope
with all types of geometrical deformations by providing a dense motion compensation. Ex-
periments with the classical bi-directional hierarchical video coding structure demonstrate
the efficiency of the proposed approach over the traditional tools of the HEVC codec.

Introduction

Inter-prediction is crucial to efficiently compress video content. By capturing tem-
poral redundancies between consecutive frames, inter-prediction methods are able to
generate accurate predictions of the frames to encode. The motion between frames
is traditionally estimated and compensated via block-based translational motion vec-
tors. To correct local inaccuracies, a residue may then be added to the prediction.
Inter-prediction methods can use past and future frames to predict current frames,
which is known as bi-directional prediction. This bi-directional prediction is generally
used in a hierarchical manner to encode a group of pictures (GOP).

Video frame interpolation is used to generate intermediate frames between two
consecutive input frames. Recently, several works have demonstrated improvements in
solving frame interpolation tasks by using deep neural networks [1, 2, 3, 4]. These ap-
proaches usually estimate an optical flow, i.e. a per pixel translational displacement,
then warp and blend the original input frames to generate the interpolated frame.
Video frame interpolation thus shares some characteristics with inter-prediction meth-
ods. In the context of video compression, such deep architectures could be useful as
an additional inter-prediction technique. Indeed these deep learning approaches are
able to estimate the motion between frames in a spatially coherent manner, at the
pixel level, which leads to good interpolation results. Moreover, these methods benefit
from the fact that no motion information need to be transmitted to the decoder.

This paper introduces a novel inter-prediction method for video compression based
on deep frame interpolation networks. For each frame that can be coded with bi-
directional inter-prediction from past and future frames, an additional reference frame



is provided by interpolating the original reference frames. The method was integrated
within the HEVC video codec [5]. BD-rates improvements are measured using the
Common Test Condition (CTC) sequences [6].

Related Work

Video frame interpolation algorithms have benefited from recent advances with deep
neural networks. Several deep architectures have been proposed in the last few
years [7, 8, 1, 2, 3, 4], constantly improving the quality of the interpolation results.
These networks usually operate in two stages. First a kind of motion estimation is
performed, such as optical flow, then the frame is interpolated from the reference
input frames and the estimated motion.

Liu et al. [1] were the first to introduce an architecture with an unsupervised learn-
ing of the optical flow. Similarly to the classical fully convolutional approaches, their
Deep Voxel Flow (DVF) network is trained end-to-end to interpolate an intermediate
frame from two consecutive input frames. However, the last layer of the network is
a non-trainable interpolation function interpolating the previous layers output and
the input frames. The loss function is computed directly as the l1-norm between
the interpolated frame and the ground truth. The network thus learns by itself to
estimate a kind of optical flow and a temporal mask for the trilinear interpolation
layer. The network outputs a voxel flow which represents the per pixel displacement
(dx, dy) and a temporal mask dt weighting the trilinear blending.

Niklaus et al. proposed in [9] an adaptive convolution approach to video frame
interpolation (AdaConv). Instead of relying on a two-steps approach, i.e. first a
motion estimation then a pixel synthesis, the authors proposed to implement the
pixel synthesis as a convolution over the two input frames. They trained a deep
neural network to predict a per pixel spatially adaptive convolution kernel. Thus for
each pixel, parameters for a 2D convolutional kernel are predicted, then the input
frames are convolved at the current pixel location to predict its interpolated value.
Their method is able to handle occlusions, blur and brightness change. However the
large kernel to be estimated for each pixel is computationally expensive, as they need
a 51 × 51 pixel kernel to handle large motions. This drawback is addressed in their
following work [2] in which they introduced separable convolutions (SepConv) using
1D kernels for faster processing.

In the image compression domain, several deep learning approaches have also
been recently proposed [10, 11, 12, 13]. Current performances already exceed classical
image codecs like JPEG [14] and JPEG2000 [15], and can reach state-of-the-art codecs
such as HEVC [5] (PSNR). Fewer works have been published on video compression.
Han et al. [16] proposed an end-to-end trainable video codec based on a variational
auto-encoder which incorporates both global and per frame latent variables to capture
temporal redundancies. Wu et al. introduced in [17] an end-to-end architecture based
on an image interpolation network to exploit temporal redundancies. A compressed
residual information is also learned jointly to correct interpolation inaccuracies.

Similarly, this paper builds upon existing deep frame interpolation methods to
target video compression applications. However, the frame interpolation method is
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Figure 1: Coding scheme: illustration for a GOP of 8 frames with the default random
access configuration. The SepConv [2] network is used here as the interpolation net-
work. The dashed lines represent the default references, the continuous line represent
the extra reference from the deep interpolation. Example is shown for the B1 frame.

introduced here within the classical hybrid video codec architecture, which allows to
take advantage of the efficient residual coding and entropy signaling of HEVC.

Coding scheme

To test deep frame interpolation networks in a video compression context, the HEVC
HM reference software [6] was modified. For each frame hierarchically coded in the
GOP, an extra reference frame, interpolated by the network, is appended to the
default reference frames list and can be selected as reference by the rate-distortion
optimization process. This new GOP structure is represented in Figure 1. For exam-
ple, the B1 frame can be predicted with the interpolated reference from the I and
B0 frames, in addition to the default HEVC reference frames.

Using extra reference frames has two advantages over fully implementing a new
inter-prediction mode in HEVC. First, the design change on the legacy decoder is
relatively straightforward, but mostly it allows the encoder to use additional inter-
prediction modes from the interpolated reference. Although the best configuration
would be to only have blocks with SKIP mode as prediction mode (only motion vector
predictions, no residual), MERGE or even INTER from the interpolated frames can
still be beneficial compared to a prediction from the default reference frames. To
support the use of extra reference frames, several flags need to be inserted into the
bitstream. The decoder will then re-interpolate the selected frames when needed, and



thus needs to know if an extra reference frame was used as prediction or not for each
coded block.

At the frame level, a flag is first set to signal the use or not of the extra reference
frames. At the Prediction Unit (PU) level, an integer is added to the motion vector
information to store the use of the selected extra reference frame. The sentinel value
0 is set as a signaling method to inform the decoder that no extra reference frames
are used for the current PU. The interpolated frame flag is entropy coded with
CABAC [18] in order to reduce the syntax size. A CABAC context is also determined
from the top and left PU blocks, if they are available for the current block. It should be
noted that no specific study was performed on the CABAC context or its initialization,
study that would be beneficial once more statistics about the proposed method are
obtained.

Experimental results

The coding experiments are performed on the common test sequences [6]. The HEVC
HM software version 16.16 was used for all the experiments. The rate-distortion
performance are computed with the Bjontegaard metric [19] using the common 22, 27,
32, 37 Quantization Parameter (QP). Unless specified otherwise, the PSNR is reported
for the Y channel only. The default HM random access configuration mode [6] is
used as a baseline for the following tests. The default fixed GOP size of 16 is used.
Experiments are run with sequences of the classes B, C and D of the CTC [6], affine
sequences class [20] and the legacy Foreman sequence. HEVC is used as the baseline
reference. Experiments were conducted with the SepConv approach [2], respectively
trained with a l1-norm (SepConv-l1 ) and a perceptual loss (SepConv-lf ), the Deep

Voxel Flow (DVF) approach [1]. A non deep learning approach, Celiu Flow [21] is
used as an additional baseline to measure the effect on using a dense optical flow at the
encoder and decoder, compared to the traditional block-based motion compensation.

BD-rate results

The BD-rate results are reported in ??. First, one can note that all the experiments
bring improvements over the HEVC codec. The best performances are obtained for
the SepConv-l1 method with a mean BD-rate reduction of -2.46%, compared to -
2.38% for the SepConv-lf network, -0.09% for DVF and -0.89% for the CeliuFow

method.
The SepConv-l1 method outperforms the other methods. This network was specif-

ically trained with the l1-norm, which minimizes the interpolation error energy, ex-
plaining the greater average performance of -0.08% over the SepConv-lf network. The
l1-norm is often preferred over the l2-norm, as it has been repeatedly shown that it
leads to less blurry results [7]. Surprisingly, the SepConv-lf performs better on three
of the sequences, and although it was trained with a perceptual norm the performance
loss compared to the one trained with the l1-norm is relatively small. Both SepConv

approaches outperform the classical optical flow approach by -1.45%. However the
Deep Voxel Flow network has the worst bit-rate distortion performances, with a mean
gain of -0.09%. Some values could also not be reported due to memory limitations



Table 1: BD-rate performances comparison for different frame interpolation methods
compared to HEVC.

Class Sequence SepConv-l1 SepConv-lf DVF CeLiu Flow

B

BQTerrace -6.38% -5.94% – -2.77%
BasketballDrive -1.43% -1.05% – -0.35%
Cactus -7.36% -7.07% – -4.56%
Kimono1 -2.05% -1.71% – -0.23%
ParkScene -2.36% -2.14% – -0.41%

C

BQMall -3.44% -2.89% -0.10% -0.34%
BasketballDrill -3.87% -3.77% -0.71% -1.17%
PartyScene -2.53% -3.08% -0.14% -0.37%
RaceHorses -1.30% -1.01% -0.03% -0.47%

D

BQSquare -3.31% -5.48% 0.10% 0.06%
BasketballPass -2.93% -2.51% -0.13% -0.34%
BlowingBubbles -2.08% -2.29% -0.13% -0.24%
RaceHorses -2.21% -1.84% -0.06% -0.29%

Affine

CStoreGoods -0.45% -0.29% – -0.25%
DrivingRecorder1 -1.37% -0.93% 0.04% -0.07%
DrivingRecorder2 -1.24% -1.03% 0.01% -0.24%
LakeWalking -0.08% 0.00% 0.03% -0.05%
ParkSunny -1.34% -1.34% – -0.82%
ParkWalking -0.54% -0.32% – -0.03%

Other foreman -2.92% -2.82% 0.08% -0.32%

Mean -2.46% -2.38% -0.09% -0.89%

in the published implementation. It is also important to note that the deep archi-
tectures were trained on RGB images, whereas HEVC encodes YCbCr frames with
a spatial 4:2:0 sampling. The input frames need to be up-sampled (chroma wise)
and converted to RGB before being processed by the network, the inverse operation
is performed before the HEVC encoding. There is some loss of information during
these conversions. Training the networks to process YCbCr 4:2:0 frames should lead
to better results.

Affine sequences benefit less from the interpolation methods as they mostly display
large global scene motions (due to camera zooms or shakes for example). Such motions
are more difficult to estimate for these methods, as they were designed and trained for
small local motions estimation. An average bit-rate reduction of -0.84% is obtained
while homography models based on local descriptors have already been demonstrated
to have superior gains, up to -3.31% [22, 23]. It would be interesting to investigate
recently proposed deep architectures designed for homography estimation [24, 25].

Cost of signaling

To signal the use of the extra interpolated reference frame, a flag is set at the frame
level and the PU level. In order to evaluate the cost of the signaling, we performed
the same experiments but disabled the flag coding at the PU level and the global flag



Signaling Class B Class C Class D Affine

Yes -3.93% -2.60% -2.62% -0.86%
No -4.15% -2.90% -3.00% -1.04%

Table 2: BD-rate results comparison with and without signaling of the extra reference
use at the prediction unit level. BD-rates were measured for the SepConv-l1 network.

(a) GOP id=8 (d = 8) (b) GOP id=12 (d = 4)

(c) GOP id=14 (d = 2) (d) GOP id=15 (d = 1)

Figure 2: Examples of references selection on the Cactus sequence at QP=22. Blocks
in green are encoded from the interpolated reference by the SepConv-l1 network.

at the frame level. Results are reported in Table 2 on the CTC sequences. Without
signaling, increased performance gains are obtained, with respective improvements of
-0.22%, -0.29%, -0.38 % and -0.18% for classes B, C, D and affine. This demonstrates
that our current CABAC coding of the flags does not add up to a significant part
of the gains, although the flag signaling could still be optimized for greater bit-rate
reductions.

The highest bit-rate reduction, -7.36%, is obtained on the “Cactus” sequence with
the SepConv-l1 network, which can be explained by the large number of small object
motions in this sequence. Estimating and compensating efficiently these small local
motions require indeed a lot of syntax signaling (quad-tree splitting, motion vectors
information, residual). This costly prediction is avoided by interpolating directly the
intermediate blocks with the proposed approach. Figure 2 shows, for some frames of
the “Cactus” sequence, the blocks for which the reference interpolated by the deep



Table 3: Comparison of the mean interpolation times for each method, on the three
classes of the CTC sequences [6].

Method Platform
Interpolation time (seconds)

Class B Class C Class D

CeliuFow CPU 52.53 9.90 2.43
DVF GPU – – 0.13
SepConv GPU 0.99 0.30 0.10

neural network is selected by the encoder.
When the frame distance between the reference frames is smaller, the network

prediction is more accurate and more blocks are encoded with the proposed method.
As such the traditional hierarchical coding structure might not benefit best the pro-
posed interpolation method, as a frame distance of 8 or 4 frames is challenging for
the currently implemented networks.

Qualitative results

Qualitative results are presented in Table 4. Interpolated frames are computed for
different distances in a group of pictures. This section provides visual results for
interpolations obtained for possible GOP distances between reference frames: 2 and
8. Results are shown for four sequences of the test set: “BQSquare”, “Cactus”,
“BasketBallPass”, and “LakeWalking”.

One may note that small local motions are well interpolated, for example the
people walking in “BQSquare”, the objects rotating in “Cactus” and the players and
their ball in “BasketBallPass”. The interpolation methods perform better for small
GOP distances (1, 2), indeed when the GOP distance between reference frames is too
large, blurry outputs are generated. This might be explained by the fact that distant
reference frames do not have a motion field that is still locally linear, as assumed by the
networks, for example the curved trajectory of the basket ball in the “BasketBallPass”
sequence. Moreover both methods struggle with the “LakeWalking” sequence which
displays strong scene motion due to the camera movements (the lack of padding for
the CeliuFow method is also clearly visible), and also illumination changes.

Complexity

When using deep convolutional networks in conjunction with classical coding archi-
tectures, it is difficult to provide a meaningful complexity study as some algorithms
are designed to run efficiently on GPU and not on CPU. Instead the interpolation
times for each methods are compared for 3 classes from the CTC test sequences
(see Table 3). The experiments were run with a single core on an Intel Xeon X5650
CPU, and a Nvidia GeForce GTX 1070 GPU. The SepConv approach is at least
25 times faster than the CeliuFow method, and about 1.3 times faster that DVF. It
benefits from running on a GPU, and an efficient CUDA implementation. However
the network SepConv network requires 21 million parameters, which takes an ap-
proximate size of 82 mega-bytes on the disk, and a single forward pass of a 256x256



First frame Second frame SepConv-l1 CeliuFow Groundtruth

GOP distance: 2

GOP distance: 8

Table 4: Qualitative evaluation of the interpolation methods. Sequences (top to bottom):
“BQSquare”, “Cactus”, “BasketBallPass”, and “LakeWalking”.



pixels patch requires around 216 mega-bytes of memory during the execution. This
constitute a major drawback for practical hardware implementations of these deep
neural networks. However, considering that coming integrated circuit architectures
are integrating deep learning capabilities, this may be less of a problem in the coming
years.

Conclusion and perspectives

This paper presented a novel inter prediction method based on a deep neural network.
The efficiency of different deep architectures was demonstrated against classical meth-
ods and the latest HEVC video codec. The prediction accuracy is improved compared
to traditional approaches as deep-learning architectures are able to learn a good gen-
eralization of motion estimation tasks, with both better modeling and higher spatial
resolution. We see this work as a first step in leveraging deep neural networks for
frame inter-prediction. The next step is to research, design and train deep interpola-
tion networks specifically in a video compression context, i.e. within a rate distortion
optimization (RDO) constraint scheme.

A lot of research remains to be performed to improve the design of deep neural
networks for video compression. Networks are usually trained, and operate, on 32-
bit floating point values. However video codec standards rely on integer operations
for the sake of reproducibility. Works have already been proposed for implement-
ing network coefficients quantization [26], such schemes will need to be studied and
adapted for video compression. The interpolation filters used by the network could
also be tailored for video inter-prediction. A closer integration in the codec would
bring improvements thanks to the RDO loop. Finally, the estimated motion range
for these deep architectures is limited to small local motions for now, which limits
the efficiency on affine sequences. Learning both a global motion and a local motion
field constitutes an important perspective.
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