Receipt automatic reader - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Receipt automatic reader

Olga Maslova
  • Fonction : Auteur
  • PersonId : 1051469
Louis Klein
  • Fonction : Auteur
  • PersonId : 1051470
Damien Dabernat
  • Fonction : Auteur
  • PersonId : 1051471

Résumé

Smartphones bring a new way to scan and digitalize written documents by taking pictures. This enables new document analysis applications to emerge. As a counterpart, unsupervised document capturing brings new challenges mainly related to target document localization and high quality text recognition. In this context, this work addresses automatic sale receipt understanding in an industrial context. It relies on the extraction of accurate and essential consumption data even with low quality receipt captures. We propose a tool chain that combines Deep Neural Networks and traditional image processing to ensure accurate automatic data extraction. The proposed workflow is evaluated globally by the analysis of the quality of the text recognition at the end of the processing.
Fichier principal
Vignette du fichier
CBMI_2019_prefinal.pdf (4.89 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02196644 , version 1 (29-07-2019)

Identifiants

  • HAL Id : hal-02196644 , version 1

Citer

Olga Maslova, Louis Klein, Damien Dabernat, A Benoit, Patrick Lambert. Receipt automatic reader. Content-Based Multimedia Indexing (CBMI) 2019, Sep 2019, Dublin, Ireland. ⟨hal-02196644⟩
194 Consultations
406 Téléchargements

Partager

More