A pseudo-marginal sequential Monte Carlo online smoothing algorithm - Archive ouverte HAL
Article Dans Une Revue Bernoulli Année : 2022

A pseudo-marginal sequential Monte Carlo online smoothing algorithm

Résumé

We consider online computation of expectations of additive state functionals under general path probability measures proportional to products of unnormalised transition densities. These transition densities are assumed to be intractable but possible to estimate, with or without bias. Using pseudo-marginalisation techniques we are able to extend the particle-based, rapid incremental smoother (PaRIS) algorithm proposed in [J.Olsson and J.Westerborn. Efficient particle-based online smoothing in general hidden Markov models: The PaRIS algorithm. Bernoulli, 23(3):1951--1996, 2017] to this setting. The resulting algorithm, which has a linear complexity in the number of particles and constant memory requirements, applies to a wide range of challenging path-space Monte Carlo problems, including smoothing in partially observed diffusion processes and models with intractable likelihood. The algorithm is furnished with several theoretical results, including a central limit theorem, establishing its convergence and numerical stability. Moreover, under strong mixing assumptions we establish a novel $O(n \varepsilon)$ bound on the asymptotic bias of the algorithm, where $n$ is the path length and $\varepsilon$ controls the bias of the density estimators.
Fichier principal
Vignette du fichier
1908.07254.pdf (782.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02194237 , version 1 (19-08-2019)
hal-02194237 , version 2 (10-04-2021)
hal-02194237 , version 3 (11-01-2024)

Identifiants

Citer

Pierre Gloaguen, Sylvain Le Corff, Jimmy Olsson. A pseudo-marginal sequential Monte Carlo online smoothing algorithm. Bernoulli, 2022, 28 (4), pp.2606-2633. ⟨10.3150/21-BEJ1431⟩. ⟨hal-02194237v3⟩
242 Consultations
243 Téléchargements

Altmetric

Partager

More