GraphX$^{NET}-$ Chest X-Ray Classification Under Extreme Minimal Supervision - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

GraphX$^{NET}-$ Chest X-Ray Classification Under Extreme Minimal Supervision

Ruoteng Li
  • Fonction : Auteur
  • PersonId : 1051165
Philip Sellars
  • Fonction : Auteur
Qingnan Fan
  • Fonction : Auteur
Robby T Tan
  • Fonction : Auteur

Résumé

The task of classifying X-ray data is a problem of both theoretical and clinical interest. Whilst supervised deep learning methods rely upon huge amounts of labelled data, the critical problem of achieving a good classification accuracy when an extremely small amount of labelled data is available has yet to be tackled. In this work, we introduce a novel semi-supervised framework for X-ray classification which is based on a graph-based optimisation model. To the best of our knowledge, this is the first method that exploits graph-based semi-supervised learning for X-ray data classification. Furthermore, we introduce a new multi-class classification functional with carefully selected class priors which allows for a smooth solution that strengthens the synergy between the limited number of labels and the huge amount of unlabelled data. We demonstrate, through a set of numerical and visual experiments, that our method produces highly competitive results on the ChestX-ray14 data set whilst drastically reducing the need for annotated data.
Fichier principal
Vignette du fichier
samplepaper.pdf (2.03 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02193970 , version 1 (25-07-2019)

Identifiants

Citer

Angelica I. Aviles-Rivero, Nicolas Papadakis, Ruoteng Li, Philip Sellars, Qingnan Fan, et al.. GraphX$^{NET}-$ Chest X-Ray Classification Under Extreme Minimal Supervision. International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI'19), Oct 2019, Shenzen, China. pp.504-512. ⟨hal-02193970⟩

Collections

CNRS IMB INSMI
57 Consultations
49 Téléchargements

Altmetric

Partager

More