COMPREHENSIVE STUDY OF THE EFFECT OF THE IRRADIATION TEMPERATURE ON THE BEHAVIOR OF CUBIC ZIRCONIA
Résumé
Cubic zirconia single-crystals (yttria-stabilized zirconia (YSZ)) have been irradiated with 4 MeV Au2+ ions in a broad fluence range (namely from 5 × 1012 to 2 × 1016 cm−2) and at five temperatures: 80, 300, 573, 773, and 1073 K. Irradiated samples have been characterized by Rutherford backscattering spectroscopy in channeling mode, X-ray diffraction and transmission electron microscopy techniques in order to determine the disordering kinetics. All experimental results show that, whatever is the irradiation temperature, the damage build-up follows a multi-step process. In addition, the disorder level at high fluence is very similar for all temperatures. Thus, no enhanced dynamic annealing process is observed. On the other hand, transitions in the damage accumulation process occur earlier in fluence with increasing temperature. It is shown that temperature as low as 573 K is sufficient to accelerate the disordering process in ion-irradiated YSZ.
ACKNOWLEDGMENTS
Domaines
MatériauxOrigine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...