Null-controllability of linear parabolic-transport systems - Archive ouverte HAL Access content directly
Journal Articles Journal de l'École polytechnique — Mathématiques Year : 2020

Null-controllability of linear parabolic-transport systems

Abstract

Over the past two decades, the controllability of several examples of parabolic-hyperbolic systems has been investigated. The present article is the beginning of an attempt to find a unified framework that encompasses and generalizes the previous results. We consider constant coefficients parabolic-transport systems with coupling of order zero and one, with a locally distributed control in the source term, posed on the one dimensional torus. We prove the null-controllability, in optimal time (the one expected because of the transport component) when there is as much controls as equations. When the control acts only on the transport (resp. parabolic) component, we prove an algebraic necessary and sufficient condition, on the coupling term, for the null controllability. The whole study relies on a careful spectral analysis, based on perturbation theory. The proof of the negative result in small time uses holomorphic functions technics. The proof of the positive result in large time relies on a spectral decomposition into low, and asymptotically parabolic or hyperbolic frequencies.
Fichier principal
Vignette du fichier
JEP_2020__7__743_0.pdf (1.23 Mo) Télécharger le fichier
Origin Publisher files allowed on an open archive
Loading...

Dates and versions

hal-02191017 , version 1 (23-07-2019)
hal-02191017 , version 2 (17-09-2019)
hal-02191017 , version 3 (16-04-2020)

Identifiers

Cite

Karine Beauchard, Armand Koenig, Kévin Le Balc’h. Null-controllability of linear parabolic-transport systems. Journal de l'École polytechnique — Mathématiques, 2020, 7, pp.743-802. ⟨10.5802/jep.127⟩. ⟨hal-02191017v3⟩
406 View
146 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More