On Data Sharing Strategy for Decentralized Collaborative Visual-Inertial Simultaneous Localization And Mapping - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

On Data Sharing Strategy for Decentralized Collaborative Visual-Inertial Simultaneous Localization And Mapping

Résumé

This article introduces and evaluates two decentralized data sharing algorithms for multi-robot visual-inertial simultaneous localization and mapping (VI-SLAM): Factor Sparsification for Visual-Inertial Packets (FS-VIP) and MinK Cover Selection for Visual-Inertial Packets (MKCS-VIP). Both methods make robots regularly build and exchange data packets which describe the successive portions of their map, but rely on distinct paradigms. While FS-VIP builds on consistent marginalization and sparsification techniques, MKCS-VIP selects raw visual and inertial information which can best help to perform a faithful and consistent re-estimation while reducing the communication cost. Performances in terms of accuracy and communication loads are evaluated on multi-robot scenarios built on both available (EUROC) and custom datasets (SOTTEVILLE)
Fichier principal
Vignette du fichier
IROS19_0465_FI.pdf (586.53 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02190833 , version 1 (23-07-2019)

Identifiants

Citer

Rodolphe Dubois, Alexandre Eudes, Vincent Frémont. On Data Sharing Strategy for Decentralized Collaborative Visual-Inertial Simultaneous Localization And Mapping. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019), Nov 2019, Macau, China. ⟨10.1109/iros40897.2019.8967617⟩. ⟨hal-02190833⟩
189 Consultations
490 Téléchargements

Altmetric

Partager

More