Statistically Significant Discriminative Patterns Searching - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Statistically Significant Discriminative Patterns Searching

Résumé

In this paper, we propose a novel algorithm, named SSDPS, to discover patterns in two-class datasets. The SSDPS algorithm owes its eciency to an original enumeration strategy of the patterns, which allows to exploit some degrees of anti-monotonicity on the measures of discriminance and statistical significance. Experimental results demonstrate that the performance of the SSDPS algorithm is better than others. In addition, the number of generated patterns is much less than the number of the other algorithms. Experiment on real data also shows that SSDPS eciently detects multiple SNPs combinations in genetic data.
Fichier principal
Vignette du fichier
paper_SSDPS_DaWak19_final.pdf (304.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02190793 , version 1 (22-07-2019)

Identifiants

Citer

Hoang Son Pham, Gwendal Virlet, Dominique Lavenier, Alexandre Termier. Statistically Significant Discriminative Patterns Searching. DaWaK 2019 - 21st International Conference on Big Data Analytics and Knowledge Discovery, Aug 2019, Linz, Austria. pp.105-115, ⟨10.1007/978-3-030-27520-4_8⟩. ⟨hal-02190793⟩
130 Consultations
175 Téléchargements

Altmetric

Partager

More