Analysis of a Sugimoto's model of nonlinear acoustics in an array of Helmholtz resonators - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Applied Mathematics Année : 2020

Analysis of a Sugimoto's model of nonlinear acoustics in an array of Helmholtz resonators

Résumé

A coupled system involving a nonlinear scalar PDE and a linear ODE is theoretically investigated. This hypebolic system with relaxation models the propagation of nonlinear waves in a waveguide connected to Helmholtz resonators, this device being an example of a nonlinear acoustic metamaterial. In a previous paper [Sugimoto, J. Fluid. Mech. 1992], it has been shown that this device allows also the propagation of acoustic solitons. In the present paper, the mathematical properties of the coupled system are analysed: formation of singularity in finite time, existence of global smooth solutions for small data, existence of entropy solutions in fractional BV spaces and uniqueness with a single family of entropies. New results are also deduced about weakly coupled systems. Numerical simulations illustrate these findings.
Fichier principal
Vignette du fichier
Siap3.pdf (390.04 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02186692 , version 1 (17-07-2019)
hal-02186692 , version 2 (21-04-2020)

Identifiants

Citer

Stéphane Junca, Bruno Lombard. Analysis of a Sugimoto's model of nonlinear acoustics in an array of Helmholtz resonators. SIAM Journal on Applied Mathematics, 2020, 80 (4), pp.1704-1722. ⟨10.1137/19M1280624⟩. ⟨hal-02186692v2⟩
319 Consultations
294 Téléchargements

Altmetric

Partager

More