
HAL Id: hal-02186692
https://hal.science/hal-02186692v2

Submitted on 21 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of a Sugimoto’s model of nonlinear acoustics in
an array of Helmholtz resonators

Stéphane Junca, Bruno Lombard

To cite this version:
Stéphane Junca, Bruno Lombard. Analysis of a Sugimoto’s model of nonlinear acoustics in an ar-
ray of Helmholtz resonators. SIAM Journal on Applied Mathematics, 2020, 80 (4), pp.1704-1722.
�10.1137/19M1280624�. �hal-02186692v2�

https://hal.science/hal-02186692v2
https://hal.archives-ouvertes.fr


ANALYSIS OF A SUGIMOTO’S MODEL OF NONLINEAR

ACOUSTICS IN AN ARRAY OF HELMHOLTZ RESONATORS

STÉPHANE JUNCA∗ AND BRUNO LOMBARD†

Abstract. A coupled system involving a nonlinear scalar PDE and a linear ODE is theoretically
investigated. This hypebolic system with relaxation models the propagation of nonlinear waves in a
waveguide connected to Helmholtz resonators, this device being an example of a nonlinear acoustic
metamaterial. In a previous paper [Sugimoto, J. Fluid. Mech. 1992], it has been shown that this
device allows also the propagation of acoustic solitons. In the present paper, the mathematical
properties of the coupled system are analysed: formation of singularity in finite time, existence of
entropy solutions in fractional BV spaces and uniqueness with a single family of entropies. New results
are also deduced about weakly coupled systems. Numerical simulations illustrate these findings.

Key words. nonlinear waves; hyperbolic systems; acoustic solitons; fractional BV spaces;
balance laws; shocks
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1. Introduction. In a series of papers [37, 38, 39, 40], Sugimoto and coauthors
proposed a model to describe the propagation of nonlinear acoustic waves in a tube
connected to a set of Helmholtz resonators (Fig. 1). The original motivation of this
work was to describe the high-amplitude waves generated by high-speed trains in
tunnels, and to propose resonators as a mean to counterbalance the effect of shock
waves. The Sugimoto’s model writes as a coupled one-dimensional system of PDE
and ODE (x ∈ R, t > 0):





∂tu+ ∂x

(
au+ b

u2

2

)
= −Ω2 ∂tp,(1.1a)

∂2t p+ ε ∂tp+ ω2
0 p = u,(1.1b)

with the coefficients a > 0, b > 0, ε ≥ 0, the characteristic frequencies ω0 and Ω, and
the initial data

(1.2) u(x, 0) = u0(x), p(x, 0) = p0(x), ∂tp(x, 0) = p1(x).

Subsequently, the Sugimoto’s model has led to numerical, experimental and theoreti-
cal works [25, 35, 31]. Enrichment of this model, in particular by taking into account
nonlinear attenuation mechanisms in (1.1b), have led to the first experimental obser-
vation of acoustic solitons [35].

Besides its physical relevance, the Sugimoto’s model is of mathematical interest.
It can be put in the form of a first-order 3×3 diagonal hyperbolic system. For systems
of this form with N equations, the existence of entropic solutions in BV is known by
using N = 3 families of entropies [32]. One objective here is to prove existence of
solutions to (1.2) in fractional BVs spaces. The latter have been introduced within the
framework of homogeneous scalar conservation laws [5], and subsequently extended
to the case of a 2 × 2 system issued from chemical engineering [6]. The structure
of functions in BVs is similar to that of BV with left and right traces. This aspect
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is fundamental for preserving the shock structure of the solutions. In addition, BVs

is larger than BV. The regularity of functions in BVs corresponds to the regularity
of Sobolev in W s,p, s p < 1 [5]. An example of the application of BVs spaces is to
characterize the smoothing effect for entropy solutions of nonlinear scalar conservation
laws [5, 11, 29]. These recent results respond in the one-dimensional case to a Lions,
Perthame and Tadmor conjecture on fractional regularity in Sobolev spaces, and keep
the properties on the traces for the entropy solutions given in [11].

Another objective is to analyze the formation of shock. The Burgers equation in
the l.h.s. of (1.1a) suggests the appearance of finite time shock. In counterpart, the
source term in the r.h.s. can counterbalance nonlinearity and prevent the occurrence of
singularity. Moreover, this source term is non-local in time (1.1b), which complicates
the analysis. In the framework of weak entropy solutions, uniqueness results are then
sought with only one family of entropies.

The article is organized as follows. Sec. 2 recalls the physical modeling under-
lying the system (1.1), which is rewritten as a first-order 3 × 3 diagonal hyperbolic
system. In Sec. 3, the breakdown of regular solutions for large initial data is investi-
gated (Theorems 3.1 and 3.2). Existence of global smooth solutions for small data is
expected physically. Therefore it is studied near equilibrium, based on the Shizuta-
Kawashima coupling condition [36]. Numerical experiments illustrate the discussion.
In Sec. 4, Theorem 4.3 states the existence of a global weak entropy solution for initial
data in BVs. Contrary to existing results [32], one family of entropies is sufficient to
prove the uniqueness of the entropy solution. Sec. 5 makes a link with the theory of
weakly coupled systems, for which existence and uniqueness results are already known
[32]. Theorem 5.3 extends these results to the case of BVs solutions. Lastly, future
directions of research are outlined in Sec. 6.

2. Problem statement.

Fig. 1. sketch of the guide connected with Helmholtz resonators.

2.1. Sugimoto’s model. Let us consider an air-filled tube connected with a
network of Helmholtz resonators (Fig. 1). The cylindrical resonators are uniformly
distributed along the tube. The geometrical parameters are the radius of the guide
R, the axial spacing between resonators D, the radius of the neck r, the length of the
neck L, the radius of the cavity rh and the height of the cavity H , which may vary
depending on the resonator. Hence, the cross-sectional area of the guide is A = π R2

and the volume of each resonator is V = π r2hH .
The physical parameters are the ratio of specific heats at constant pressure and

volume γ, the pressure at equilibrium p0, the density at equilibrium ρ0, and a phe-
nomenological term modeling the losses in the necks of the resonators ǫ. The other
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dissipation mechanisms are neglected: the sound diffusivity is negligible, and the
boundary layer in the tube involves fractional derivatives, which complicates the anal-
ysis. It yields the linear sound speed a0 and the angular frequencies ω0 and Ω:

(2.1) a0 =

√
γ p0
ρ0

, ω0 = a0

√
B

LV
= a0

r

rh

1√
LH

, Ω =

√
V

2 ρ0 a0AD
.

The following assumptions are made about the waves of angular frequency ω and
wavelength λ propagating in the tube:

• low-frequency regime (ω < ω∗ ≈ 1.84 a0

R ), so that only the plane mode propa-
gates and the 1D approximation is valid [8];

• weak acoustic nonlinearity in the tube (small Mach number) [14];
• continuous distribution of resonators (wavelength λ≫ D);
• linear response of the resonators, no turbulence.

Under these assumptions, the system can be described by a one-dimensional config-
uration with a surfacic distribution of resonators, where the unknowns are the axial
velocity of the gas u and the excess pressure in the cavity (compared to the guide) p.
The right-going simple wave is then modeled by a coupled PDE-ODE system initially
proposed by Sugimoto [37]:





∂tu+ ∂x

(
a0u+

γ + 1

2

u2

2

)
= −Ω2 ∂tp,(2.2a)

∂2t p+ ǫ ∂tp+ ω2
0 p = ω2

0

γ p0
a0

u.(2.2b)

Defining the normalization parameter θ = ω2
0
γp0

a0

, the scaled coordinate t→ t
√
θ and

the scaled positive parameters, which may vary with x:

(2.3) a =
a0√
θ
, b =

γ + 1

2
√
θ
, ε :=

ǫ√
θ
, ω0 :=

ω0√
θ
,

then the system (2.2) recovers (1.1). It is noted that the system originally proposed
incorporates additional terms of attenuation [37]. The full system is given in Sec. 6.

2.2. First-order hyperbolic system. Introducing the new variable ϕ := ∂tp,
the Sugimoto’s system (1.1) is put in the form of a first-order system






∂tu+ ∂x

(
au+ b

u2

2

)
= −Ω2 ϕ,(2.4a)

∂tϕ = u− εϕ− ω2
0 p,(2.4b)

∂tp = ϕ,(2.4c)

with initial data

(2.5) u(x, 0) = u0(x), ϕ(x, 0) = ϕ0(x), p(x, 0) = p0(x).

Compatibility between these initial data and those of the 2×2 Sugimoto’s system will
be examined further in (3.3). Let us consider smooth solutions of (2.4). Multiplying
(2.4a) by u, (2.4b) by Ω2 ϕ and (2.4c) by Ω2 ω2

0 p, adding the terms and integrating
with respect to x yields

(2.6)
d

dt

1

2

∫

R

(
u2 +Ω2ϕ2 +Ω2 ω2

0 p
2
)
dx = −

∫

R

εΩ2 ϕ2 dx.
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The energy in l.h.s. in (2.6) is convex. If ε > 0, the system is dissipative, whereas
ε = 0 describes a conservative system. For weak solutions of (2.8), the equality in
(2.6) becomes an inequality. Setting
(2.7)

U = (u, ϕ, p)⊤, F(U) =

(
au+ b

u2

2
, 0, 0

)⊤

, S =




0 −Ω2 0
1 −ε −ω2

0

0 1 0



 ,

the system (2.4) writes as a balance laws

(2.8) ∂tU+ ∂xF(U) = SU.

The flux F in (2.7) is diagonal. The Jacobian matrix A(U) = ∇UF(U) has 2 real
eigenvalues:

• the eigenvalue a+b u is genuinely nonlinear with the eigenvector e1 = (1, 0, 0)⊤;
• the eigenvalue 0 is linearly degenerate of multiplicity 2, with an eigenspace
generated by e2 = (0, 1, 0)⊤ and e3 = (0, 0, 1)⊤.

Without the source term, the system is diagonal, hence u, ϕ and p are the Riemann
invariants. The eigenvalues of S are
(2.9)

Sp(S) =

{
0,

1

2

(
−ε+

(
ε2 − 4

(
Ω2 + ω2

0

))1/2)
,
1

2

(
−ε−

(
ε2 − 4

(
Ω2 + ω2

0

))1/2)
}
.

If ε 6= 2
√
Ω2 + ω2

0 , then S is diagonalizable.

3. Formation of singularities. In the case of large data, we prove sufficient
conditions for the breakdown of regular solutions in finite time. For this purpose, the
2× 2 system (1.1) is first transformed into a scalar equation with a source term (Sec.
3.1). Then one considers successively the dissipative case ε > 0 (Sec. 3.2) and the
conservative case ε = 0 (Sec. 3.3). In the case of small data, global smooth solutions
are expected: the Sugimoto’s model has been defined to prevent from the occurence of
shocks and to propagate acoustic solitons [37]. The Shizuta-Kawashima is invocated
to study the possible existence of global smooth solutions near equilibrium (Sec. 3.4).
Numerical experiments are proposed to illustrate these properties (Sec. 3.5).

3.1. Burgers equation with memory. Equation (1.1b) is differentiated in
terms of t. Using ϕ = ∂tp yields:






∂tu+ ∂x

(
au+ b

u2

2

)
= −Ω2 ϕ,(3.1a)

d2ϕ

dt2
+ ε

dϕ

dt
+ ω2

0ϕ = ∂tu ≡ σ,(3.1b)

with the initial data

(3.2) u(x, 0) = u0(x), ϕ(x, 0) = ϕ0(x),
dϕ

dt
(x, 0) = ϕ1(x).

Smooth solutions of (1.1) are solutions of (3.1), provided the initial data (3.2) satisfy
the compatibility condition

(3.3) ϕ1(x) = u0(x)− ε ϕ0(x) − ω2
0 p0(x).
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Conversely, integrating (3.1b) with respect to t recovers (1.1) under the condition
(3.3). The explicit solution of (3.1b) is

(3.4) ϕ(x, t) = ϕ0(x)J0(t) + ϕ1(x)J1(t) +

∫ t

0

J1(t− s)σ(x, s) ds,

where J0 and J1 depend on the coefficients of (3.1b). Setting

(3.5) ∆2 = ε2 − (2ω0)
2, δ =

√
|∆|,

calculations yield the following 4 cases:
• ε = 0, ω0 = 0:

(3.6) J0(t) = 1, J1(t) = t.

• 0 ≤ ε < 2ω0:

(3.7)
J0(t) = exp(−ε t/2)

(
cos(δt/2) +

ε

δ
sin(δt/2)

)
≡

ε→0
cosω0t,

J1(t) =
2

δ
exp(−ε t/2) sin(δt/2) ≡

ε→0

1

ω0
sinω0t.

• ε = 2ω0:

(3.8) J0(t) =
(
1 +

ε

2
t
)
exp(−ε t/2), J1(t) = t exp(−ε t/2).

• ε > 2ω0:
(3.9)

J0(t) =
1

2 δ
((ε+ δ) exp (−(ε− δ) t/2)− (ε− δ) exp (−(ε+ δ) t/2)) ,

J1(t) =
1

δ
(exp (−(ε− δ) t/2)− exp (−(ε+ δ) t/2)) .

The solution (3.4) is injected into (3.1a). Integration by parts and the property
J1(0) = 0 allow to transform the 2× 2 system (1.1) into the nonlocal scalar PDE
(3.10)

∂tu+ ∂x

(
au+ b

u2

2

)
= ϕ0(x)K0(t) + (ϕ1(x) − u0(x)) K1(t) + Lu(x, t),
= ϕ0(x) (K0(t)− εK1(t))− ω2

0 p0(x)K1(t) + Lu(x, t)

where the compatibility condition (3.3) has been used, and with

(3.11)

K0(t) = −Ω2 J0(t), K1(t) = −Ω2 J1(t), K(t) = −Ω2 J
′

1(t),

Lu(x, t) =
∫ t

0

K(t− s)u(x, s) ds.

In the case where the resonators are initially at rest p0(x) = 0 and p1(x) = 0, then
(3.10) reduces to the scalar PDE with memory

(3.12) ∂tu+ ∂x

(
au+ b

u2

2

)
=

∫ t

0

K(t− s)u(x, s) ds.

This is a Burgers equation with a non-local source term as in [7].
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3.2. Dissipative case. Based on (3.10)-(3.11), some norms are introduced:

(3.13)

C0 = ‖ϕ′

0‖∞‖K0 − εK1‖∞ + ω2
0 ‖p

′

0‖∞‖K1‖∞,

C =

∫ +∞

0

|K(t)| dt,

C♯ =
C +

√
C2 + 4 b C0

2 b
≥ C.

In the dissipative case ε > 0, C in (3.13) can be computed analytically from (3.7)-(3.9)
and (3.11). Setting t∗ = 1

δ arctan
δ
ε , one obtains:

(3.14)

C =






2Ω2 ε

ε2 + 4 δ2

(
−1 +

4
√
1 + (δ/ε)2

1− exp (−(ε π)/(2 δ))
exp (−ε t∗/2)

)
if 0 < ε < 2ω0,

4Ω2

ε exp(1)
if ε = 2ω0,

4Ω2

ε+ δ

(
ε− δ

ε+ δ

)ε− δ

2 δ
if ε > 2ω0.

Sufficient conditions are now stated for the formation of singularity with smooth initial
data.

Theorem 3.1 (Shock in finite time: case ε > 0). Let us assume that the initial
data (u0, ϕ0, p0) are smooth with compact support. If inf u

′

0(x) < −C♯ and supu
′

0(x) ≤
C♯, then a shock appears in finite time.

Proof. Following the idea of Lax [19], we deduce from (3.10) the Riccati equation
satisfied by U = ∂xu with initial condition U0 = u

′

0:
(3.15)

∂tU + (a+ bu) ∂xU + b U2 = ϕ
′

0(x)(K0(t)− εK1(t))− ω2
0 p

′

0(x)K1(t) + LU,
≡ k(x, t) + LU.

As long as the solution is smooth, equation (3.15) is rewritten along the characteristics:

(3.16)
d

dt
U = −b U2 + k(x, t) + LU.

The integration is now along characteristic curves, so that the operator L is modified;
nevertheless, the notation L is kept for simplicity. In the case of the homogeneous
Burgers equation, the Riccati ODE is simply

d

dt
U = −b U2,

which blows-up at time T ∗ = −1/(b U(0)) if U(0) < 0. When a linear dissipative
source term −λu is added to the Burgers equation, a similar analysis yields

d

dt
U = −b U2 − λU,

whose threshold is inf U0 < −λ/b. The analysis of (3.16) is more complex due to
the nonlocal source term LU , which can accelerate or moderate the blow-up of U .
Roughly speaking, the competition between the nonlinear part and the linear part
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favors a blow-up if d
dtU < 0 is large enough. Let us prove it under the assumptions

of the theorem. At any x, equation (3.16) and the notations (3.13) give

(3.17)
d

dt
U ≤ −b U2 + C0 + C sup

(y,s)∈R×[0,t]

|U(y, s)|.

One introduces the suprema m(t) = inf U(., t) = U(x0, t0) and M(t) = supU(., t).
The existence of x0 is ensured by the fact that the solution of (3.16) remains with
compact support at all time (Sec. 4.2). If m < −C♯, the inequality −bm2 + C0 +
C|m| < 0 holds. Similarly, M > C♯ implies −bM2 + C0 + C|M | < 0. Under the two
conditions

(3.18) m(t0) < −C♯, |m(t0)| > M(t0),

it follows that the r.h.s of (3.17) is negative at (x0, t0). Similarly, |M | > C♯ implies
that M(t) < C♯ for all time: C♯ is a barrier for M(t) [16].

It remains to prove (3.18) for all t. These two conditions are valid at t0 = 0 from
the assumptions of the theorem. Assuming that (3.18) is true at a given t0, U(x0, t)
is decreasing at least locally for t < t0 and t ≃ t0. Thus, for h > 0 small enough,

(3.19)

m(t0 + h) ≤ U(x0, t0 + h) = U(x0, t0) + hU̇(x0, t0) +O(h2),

≤ m(t0) + hU̇(x0, t0) +O(h2),

≤ m(t0) + h
(
−bm(t0)

2 + C0 + C|m(t0)|
)
+O(h2).

Denoting ṁ the generalized right derivative of m [9]:

(3.20) ṁ(t) = lim sup
h>0,h→0

m(t+ h)−m(t)

h
,

then m satisfies

(3.21) ṁ(t0) ≤ −bm(t0)
2 + C0 + C|m(t0)|.

It follows m(t) ≤ y(t), where y satisfies

(3.22)

{
ẏ = −b y2 + C0 − Cy,

y(0) = y0 := m(0) < −C♯.

The solution of (3.22) is explicitly known and blows-up in finite time T ∗:

(3.23) T ∗ = − − lnα√
C2 + 4 b C0

> 0, α =
C +

√
C2 + 4 b C0 + 2 b y0

C −
√
C2 + 4 b C0 + 2 b y0

,

with 0 < α < 1. Since y is an upper solution of m, it follows that m blows up in finite
time. The lifetime of U = ∂xu is smaller or equal than T ∗.

In the case of the scalar Burgers equation with linear dissipation

(3.24)





∂tu+ ∂x

(
a u+ b

u2

2

)
= −ε u,

u(x, 0) = u0(x),

shock occurs iff inf u
′

0(x) < −ε/b ≡ C♯. This minimal slope of the initial data increases
linearly with the dissipation parameter. In the case of Sugimoto’s system, on the
contrary, the shock limit C♯ in (3.14) does not evolve monotonically with ε. It is
recalled, nevertheless, that it is only a sufficient condition (and not necessary).
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3.3. Conservative case. Theorem 3.1 is now extended to the conservative case
ε = 0 with ω0 6= 0. Any t > 0 can be written t = nπ/(2ω0)+r, with 0 ≤ r < π/(2ω0).
From (3.7) and (3.11), one obtains

∫ t

0

|K(τ)| dτ =
2Ω2

π

(
t− r +

π

2ω0
sinω0 r

)
,

and hence

(3.25) ‖L(., t)‖∞ ≤ C(1 + t), with C =
2Ω2

π
max

(
1,

π

2ω0

)
.

Theorem 3.2 (Shock in finite time: case ε = 0). Let consider smooth initial
data (u0, ϕ0, p0) with compact support. There exist two constants C± > 0 depending
on (ϕ0, p0) such that if inf u

′

0 < −C− and supu
′

0 ≤ C+, then a shock appears in finite
time.

Proof. We follow the proof of Theorem 3.1 with the same notations. The main
modification is that C has to be replaced by C t in (3.22) since the norm of the linear
operator is now of order t, as seen in (3.25):

(3.26) ẏ = −b y2 + C0 − C(1 + t) y.

Contrary to the dissipative case, the ODE (3.26) has not separable variables yielding
an explicit solution. To prove the theorem, it suffices to get an upper solution blowing
up in finite time T ∗ < 1. Setting D = max(C0, 2C), these solutions satisfy y < 0 and

(3.27) ẏ ≤ f(y) := −b y2 +D (1 + |y|).

Let z be the solution of ż = f(z) and z− be the negative root of f(z) = 0. If
z0 < z−, then z is an upper solution of y; it is also decreasing and its lifespan is
T (z0) =

∫ +∞

z0
dz

−b z2+D(1+|z|) → 0 when z0 → −∞. Thus, there exists a constant C−

such that for z0 ≤ −C−, then T (z0) < 1. Consequently, the solution y of (3.26) with
y0 ≤ −C− blows up before time 1. The constant C+ is chosen as in the proof of
Theorem 3.1 to keep the r.h.s. of (3.26) negative, which concludes the proof.

3.4. Case of small solutions. If ε 6= 0, the hyperbolic system (2.4) is dissipa-
tive. In this case, Theorem 3.1 gives sufficient conditions of singularity formation for
large smooth initial data. But due to the dissipation, global smooth solutions are also
expected if the initial data are smooth and sufficiently small.

To prove the existence of global smooth solutions near equilibrium, a sufficient
condition is given in [15] based on two properties: the Shizuta-Kawashima condition
(S-K) at the equilibrium, and a special form of the dissipation.

The S-K condition relates on the linearized equations at the equilibrium. It is
optimal in the linear case to get asymptotic stability of the equilibrium, but only
sufficient in the nonlinear case [1, 30]. It is also possible that the S-K condition is
satisfied on a continuum set of equilibria except at one point [1] whithout affecting
the conclusion of [15]. For the Sugimoto’s model, the S-K condition is fulfilled at all
equilibrium states except one, as proven in the proposition 3.3 below.

Proposition 3.3. The Shizuta-Kawashima condition is fulfilled at all non-zero
equilibrium parametrized by pe 6= 0:

(3.28) (ue, ϕe, pe)
⊤ = (ω2

0 pe, 0, pe)
⊤.
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On the contrary, the Shizuta-Kawashima condition is not satisfied at rest:

(3.29) (ue, ϕe, pe)
⊤ = (0, 0, 0)⊤.

Proof. When ue 6= 0, ker(S) = {s (ω2
0 , 0, 1)

⊤, s ∈ R} is a one-dimensional sub-
space defined by ϕ = 0, u = ω2

0 p. The first eigenvector of A associated with the
non-null eigenvalue, e1 = (1, 0, 0) /∈ ker(S). The two-dimensional eigenspace associ-
ated to the eigenvalue 0 of A clearly does not belong to the kernel of S.

On the contrary, if ue = 0, the Jacobian matrix writes A = a I where I is the
3×3 identity matrix. The eigenspace of A encompasses the full space, so the Shizuta-
Kawashima condition is not satisfied by (3.29).

The sufficient form of the dissipation has to be strictly entropy dissipative (def-
inition 2 in [15]). Unfortunately, the Sugimoto model is only entropy dissipative
(definition 1 in [15]). Thus, we cannot prove the existence of global smooth solutions
[15]. Nevertheless, numerical experiments and the dissipative structure of the model
suggest that smooth solutions could exist, even if it remains an open problem.

R (m) D (m) r (m) L (m) rh (m) H (m)
0.025 0.1 0.01 0.02 0.0215 0.1

γ p0 (Pa) ρ0 (kg/m3) ǫ (s−1)
1.403 1.01 105 1.177 5000

a b ε Ω ω0

4.75 10−3 1.64 10−5 6.84 10−2 3.00 10−2 4.94 10−2

Table 1
Geometrical, physical and scaled parameters in Sugimoto’s model (2.4).

3.5. Numerical experiments.

Numerical methods. The numerical resolution of (2.8) is detailed in [25]. It relies
on a splitting strategy. The non-homogeneous system (2.8) is split into a homogeneous
hyperbolic PDE

∂tU+ ∂xF(U) = 0

which is solved by a finite-volume scheme with flux limiters, and a linear ODE

∂tU = SU

which is solved exactly. The coupling between the successive resolutions is done by the
second-order Strang splitting [21]. The choice of the numerical set-up (mesh size ∆x,
variable time step ∆t) ensure reference solutions, not polluted by numerical artefacts.
The numerical value of a φ(xi = i∆x, tn = tn−1 +∆t) is denoted φni .

To detect the emergence of a shock in the conservative case ε = 0, we use the fact
that energy in (2.6) is conserved in the case of smooth solutions. For this purpose,
we define a discrete counterpart of the energy in (2.6):

(3.30) En =

√
∆x

2

∑

i

((uni )
2 +Ω2(ϕn

i )
2 +Ω2 ω2

0 (p
n
i )

2).

As long as the solution is smooth, En remains constant. When a shock emerges,
then En decreases. Obviously, this numerical criterion is valid when the numerical
dissipation of the numerical scheme is sufficiently small, which will be the case here.
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Fig. 2. Initial data u0(x) given in (3.31).
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Fig. 3. Snapshots of u at various instants (top) and time evolution of the discrete energy
(bottom) in the conservative case ε = 0. Left row: A = 100, right row: A = 5000.

Configuration. The numerical values of the geometrical and physical parameters
(Sec. 2.1) are issued from [35]. Based on (2.3), il follows the scaled parameters (2.4).
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The full set of parameters is given in Table 1. In Theorem 3.1, the sufficient condition
for the formation of shock involves different bounds for the maximum and minimum
slopes. To place ourselves in the hypotheses of the theorem, we use as initial data

(3.31) u0(x) =

{
g(x− x0) if x < x0,

0 else,
with g(x) = Ax exp(−x/σ).

The other initial conditions are null: ϕ0 = p0 ≡ 0. In (3.31), one chooses x0 = 4
m and σ = 0.427 m, which corresponds roughly to a wavelength λ = 4 m (Fig. 2).
The maximal and minimal slopes of the initial data (3.31) are deduced: supu

′

0(x) =
u

′

0(x0 − 2σ) = A/(exp(1))2 and inf u
′

0(x) = u
′

0(x0) = −A.
Results. Fig. 3 illustrates the conservative case ε = 0, for which no bounds are

explicitly known about the slopes inf u
′

0(x) and supu
′

0(x) (Theorem 3.2). We represent
u at different instants as well as the temporal evolution of the discrete energy (3.30),
for two values of the amplitude: A = 100 and A = 5000. If A = 100, the discrete
energy E is constant, which indicates that no shock appears. If A = 5000 on the
contrary, the discrete energy drops from the first moments, then reaches a plateau. It
indicates the formation of a shock visible in at t = 200 s. Once the shock is formed,
a smooth soliton emerges and propagates without deformation.

0 2 4 6 8 10 12 14 16 18 20

1000 

2000 

3000 

4000 

x (m)

t (
s)

0 1 2 3 4 5 6 7 8 9 10 11 12

200 

400 

600 

800 

1000 

x (m)

t (
s)

shock

Fig. 4. Snapshots of u at various instants in the dissipative case ε 6= 0. Left row: A = 100,
right row: A = 5000.

The dissipative case is illustrated in Fig. 4. The discrete energy is no longer
shown, since it decreases independantly from the occurence of shocks, and thus it
does not give an indicator of singularity formation. The initial data yield C0 = 0 and
C♯ = 1215.55 in (3.13). If A = 100, then supu

′

0(x) = 13.53 < C♯ but inf u
′

0(x) =
−100 > C♯: the sufficient condition of singularity formation is no more satisfied. No

shock is observed (left row). If A = 5000, on the contrary, then supu
′

0(x) = 676 < C♯

and inf u
′

0(x) = −5000 < C♯: the assumptions of Theorem 3.1 are satisfied. Indeed, a
shock is observed during the first instants (right row).

4. Large global BVs solutions.

4.1. Definitions and main result. Since shocks can occur, weak solutions are
now considered.

Definition 4.1 (Weak entropy solutions). Let consider the system (2.8) with
initial data U0. A function U ∈ L∞

loc([0,+∞[×R,R3) is a weak solution if, for all
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smooth vectorial test functions Φ ∈ C∞
c (R × [0,+∞[,R3) with compact support in

R× [0,+∞[, one has:

(4.1)

∫ +∞

0

∫

R

(
U · ∂tΦ+ F(U) · ∂xΦ+Φ⊤ · SU

)
dx dt+

∫

R

U0(x) ·Φ(x, 0)dx = 0.

Moreover, if U ∈ C0([0,+∞[, L1
loc(R,R

3) and satisfies for all convex entropy η ∈
C2(R,R) with the associated entropy flux ψ′(u) = (a+b u) η′(u) and for all nonnegative
scalar test functions φ ∈ C∞

c (R× [0,+∞[,R+):
(4.2)∫ +∞

0

∫

R

(
η(u) ∂tφ+ ψ(u) ∂xφ+ η′(u)Ω2 ϕφ

)
dx dt+

∫

R

η(u0(x))φ(x, 0) dx ≥ 0,

then U is called an entropy solution.
For weakly coupled systems, entropies are usually tested on each equation to get

uniqueness results [32], as recalled in the forthcoming Sec. 5. On the contrary, the
entropy condition in Definition 4.1 is only tested on the first equation (2.4a) of the
Sugimoto’s system. This choice is motivated by the fact that the only nonlinearity
(generating shock waves) occurs in the first equation. As seen further, using a single
family of entropies suffices to prove the uniqueness of the solution to (2.4). The
fractional spaces BVs, 0 < s < 1, are recalled:

Definition 4.2 (BVs function). Let TV s be the total variation, also called the
p−variation with p = 1/s:

(4.3) TV s(u) = sup
n∈N, x0<x1<...<xn

∑

0≤i<n

|u(xi+1)− u(xi)|1/s.

The BVs scalar functions on R are defined by BVs(R) = {u, TV s(u) < +∞}. A
vectorial function is in BVs if all its components belong to BVs. Equivalently, the
TV s variation can be taken with a vectorial norm instead of the absolute value.

Now we state the main theorem of this paper, concerning the existence of BVs

solutions of the Sugimoto’s system.
Theorem 4.3 (Large BVs solutions). Let the initial data U0 = (u0, ϕ0, p0)

⊤

belong to BVs(R,R3), 0 < s < 1. Then the system (2.4) admits an unique global weak
entropy solution in

L∞
loc([0,+∞[,BVs(R,R3) ∩ Cs

loc([0,+∞[, L
1/s
loc (R,R

3).

Moreover, the solution satisfies the energy inequality:

(4.4)
d

dt

1

2

∫

R

(
u2 +Ω2 ϕ2 +Ω2 ω2

0 p
2
)
dx ≤ −

∫
εΩ2 ϕ2 dx.

Remark 4.1 (BV solutions). For s = 1, the usual BV=BV1 solutions for scalar
conservation laws are recovered by the Sugimotos’ system where Cs has to be replaced
by Lipschitz: if U0 belongs to BV(R,R3) then

U ∈ L∞
loc([0,+∞[,BV(R,R3) ∩ Liploc([0,+∞[, L1

loc(R,R
3).

Remark 4.2 (L∞ solutions). For s = 0, the functional space is BV0 = L∞.
For weakly coupled systems with initial data in L∞, results similar to 4.3 are already
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known [32], as seen in Sec. 5. In this particular case, Theorem 4.3 yields a new result:
one whole family of scalar entropy η ∈ C2(R,R) depending only on u is sufficient to
prove uniqueness.

The uniqueness of the entropy solution with only one entropy is well known for the
Burgers’ equation. Since only one field is nonlinear in Sugimoto’s model, the result
stated in Theorem 4.3 is not surprising. The rest of Sec. 4 is devoted to the proof of
Theorem 4.3, which amounts to prove the propagation of the BVs regularity in space
for all positive time. The existence of BVs solutions relies on a splitting scheme. The
uniqueness follows from the classical Kruzkov proof of doubling of variables. Such a
result is known for weakly coupled systems using as many families of entropy as the
size of the system [32]; we check below that one single family of entropies is sufficient
for the Sugimoto’s system, which constitutes a slight improvement. Finally, it ends
by the proof of the energy inequality.

4.2. Splitting scheme. The BVs, BV and L∞ estimates are obtained by a
splitting scheme which splits the system (2.8) in two parts: first, the Burgers equation,
second the differential systems. These two parts are studied independently.

Let ∆t > 0, U0(x) = U0(x), Un = (un, ϕn, pn)⊤ stands for the approximate
solution built by the splitting scheme at time tn = n∆t. The half-step value Un+1/2

is the solution of the homogeneous hyperbolic PDE

(4.5)

{
∂tU+ ∂xF(U) = 0, (x, t) ∈ R×]tn, tn+1],

U(x, tn) = Un.

Then Un+1 is given by the solution of the ODE parametrized by x,

(4.6)






d

dt
U = SU, t ∈]tn, tn+1]

U(., tn) = Un+1/2.

The splitting scheme can be performed in various ways, for instance a wave front
tracking for Burgers [10] and an approximate solution for the ODE. We choose here
the most precise splitting scheme. The hyperbolic part is only a Burgers equation
which is solved exactly. The linear ODE is solved explicitly:

1. un+1/2 is the exact solution at time tn+∆t of the Burgers equation with initial
data un. The other components are constant: ϕn+1/2 = ϕn and pn+1/2 = pn;

2. Un+1 = exp(tS)Un+1/2 is the exact solution of the ODE.

Burgers equation. It is well known that both the L∞ norm and the total variation
of the entropy solution u of the Burgers equation are non increasing [10]. A similar
result has been obtained recently concerning the fractional total variation: TV s(u) is
non increasing with respect to time [5].

Differential system. The ODE (4.6) writes






du

dt
= −Ω2 ϕ,(4.7a)

dϕ

dt
= u− ε ϕ− ω2

0 p,(4.7b)

dp

dt
= ϕ.(4.7c)
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The Euclidean norm associated to this differential system is

(4.8) |U|22 = u2 +Ω2 ϕ2 +Ω2 ω2
0 p

2.

The L∞ norm and the total variation w.r.t. x are chosen in accordance with (4.8):

(4.9)

‖U(x)‖2,∞ = sup
x∈R

|U(x)|2,

TV s
2 (U) = sup

n∈N, x0<...<xn

∑

0≤i<n

|U(xi+1)−U(xi)|1/s2 .

Proposition 4.4 (Decaying energy and total variation). The solution of (4.6)
satisfies






1

2

d

dt
|U|22 = −εΩ2 ϕ2 ≤ 0,(4.10a)

TV s
2 (U(., t)) ≤ TV s

2 (U(., 0)).(4.10b)

Proof. The derivation of (4.10a) is usual. It follows the same computation as
for the global space energy decay (2.6), except there is no space variable. Mutiplying
(4.7a) by u, (4.7b) by Ω2 ϕ, (4.7c) by Ω2 ω2

0 p and adding all the terms yields

1

2

d

dt

(
u2 +Ω2 ϕ2 +Ω2 ω2

0 p
2
)
= −εΩ2 ϕ2.

To study the total variation in space, let x < y. The differential system is linear with
respect to the initial data U(x, 0)−U(y, 0), thus U(x, t)−U(y, t) satisfies also (4.6).
Thus, the inequality |U(x, t)−U(y, t)|2 ≤ |U(x, 0)−U(y, 0)|2 is a direct consequence
of the pointwise decay of the energy (4.10a). Summing up the variation and taking
the supremum yields (4.10b).

Concerning the asymptotic behavior of the solutionU(t) of the differential system
(4.7) with initial data (u0, ϕ0, p0)

⊤, the equilibrium are the constant states (u, ϕ, p) =
(ω2

0 p0, 0, p0)
⊤ which belong to ker(S). The matrix S is diagonalizable, except for one

value of ε (2.9). Using a basis diagonalizing S or the Jordan normal form, one writes
U0 = U1 + U2 where U1 belongs to ker(S) and U2 belongs to the plane P in the
range of S. Two cases occur:

1. the dissipative case ε > 0. Then U(t) → U1 exponentially when t→ +∞.
2. the conservative case ε = 0. Then U(t)−U1 is an harmonic oscillator in the

plane P .

4.3. BV estimate for the full system. Now, we are able to obtain uniform
estimates of U on any strip [0, T ] × R for any positive time T . Using the decrease
of the norm and of the total variation in each part of the splitting, it is tempting to
expect the same decay for the whole splitting scheme, but it is wrong. The reason is
that the norms involved in the two steps of the splitting are not the same. For the
Burgers part of the splitting, the norm max(‖u‖∞, ‖ϕ‖∞, ‖p‖∞) is not increasing, and
for the ODE part this is the norm ‖U‖∞ related to the Euclidean norm (4.8) which is
non increasing. The following norm and total variation, well adapted to the Burgers’
part of the splitting scheme, are now introduced:

(4.11)

|U| = max(|u|, |ϕ|, |p|),
‖U‖∞ = max(‖u‖∞, ‖ϕ‖∞, ‖p‖∞),

TV s(U) = max (TV s(u), TV s(ϕ), TV s(p)) .
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Based on these norms, the following proposition provides bounds sufficient to prove
the convergence, as done in [10, 6].

Proposition 4.5 (L∞ and BVs estimates on (0, T )×R). There exists a positive
constant c such that for all n such that n∆ t ≤ T ,

(4.12)
‖Un‖∞ ≤ ‖U0‖∞ exp(c T ),

TV s(Un) ≤ TV s(U0) exp(c T ).
.

Proof. The two parts of the splitting are studied successively, by induction.
First, solving the Burgers equation and thanks to the maximum principle, one gets
‖un+1/2‖∞ ≤ ‖un‖∞. Morerover ϕn+1/2 = ϕn, pn+1/2 = pn are unchanged, so that
‖Un+1/2‖∞ ≤ ‖Un‖∞. Second, solving exactly the differential linear system (4.6)
can increase the L∞ norm. Let c > 0 be the matrix norm of S related to the vectorial
norm ‖.‖∞:

c = sup
|U|=1

|SU| = ‖|S‖|∞,

then

|Un+1(x)| ≤ exp(c∆t) |Un+1/2(x)| ≤ exp(c∆t) ‖Un+1/2‖∞,

and hence:

‖Un+1‖∞ ≤ exp(c∆t) ‖Un+1/2‖∞ ≤ exp(c∆t) ‖Un‖∞.

This is enough to get the L∞ bound on [0, T ].
The TV bound is obtained in the same way. The total variation decays for the

entropy solution of the Burgers equation and the variables (ϕn, pn) are unchanged, so

TV s(Un+1/2) ≤ TV s(Un).

The differential system (4.6) is linear, thus Vn+1
i = Un+1(xi+1)−Un+1(xi) satisfies

the same system and

|Un+1(xi+1)−Un+1(xi)| ≤ exp(c∆t) |Un+1/2(xi+1)−Un+1/2(xi)|.

Adding on i and taking the supremum yields

TV s(Un+1) ≤ exp(c∆t)TV s(Un+1/2) ≤ exp(c∆t)TV s(Un),

which concludes the proof.
These BV bounds provide the compactness in space, and hence the compactness

in space and time through a bound in LiptL
1
x. Then, passing to the limit, the same

bound is obtained for an entropy solution. The passage to the limit is classic, see for
instance [17, 27, 28, 34]. In the case of fractional BVs, the Lipschitz estimate in time
is replaced by a Hölder estimate [5, 6, 12].

4.4. Uniqueness with only Burgers’ entropies. The uniqueness is a conse-
quence of two stability results w.r.t the L1 norm: first, the Kruzkov stability for a
scalar equation with a source term, second, the stability of the solutions of a differen-
tial system. The general case for weakly coupled system is discussed in Sec. 5. In the
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particular case of the system (2.8), let us consider two initial data U0 and Ũ0 and

the corresponding solutions U and Ũ.

Using the entropies only for the first equation (2.4a), the Kruzkov method of
doubling of variables [18, 10] yields for a scalar equation with a source term:

(4.13)

∫

R

|u− ũ|(x, t)dx ≤
∫

R

|u0 − ũ0|(x) dx +

∫ T

0

∫

R

Ω2 |ϕ− ϕ̃|(x, t) dx dt.

Next, substracting ϕ and ϕ̃ and also p and p̃ in the two last equations of the linear
system (2.4b)-(2.4c), we have directly for an explicit constant C > 0:

(4.14)

∫

R

(|ϕ− ϕ̃|+ |p− p̃|) (x, t) dx ≤
∫

R

(|ϕ0 − ϕ̃0|+ |p0 − p̃0|) (x, t) dx

+C

∫ T

0

∫

R

(|u− ũ|+ |ϕ− ϕ̃|+ |p− p̃|) (x, t) dx dt.

The two inequalities are added. Gronwall lemma provides the L1 stability.

4.5. Energy inequality. Now, we turn to prove inequality (4.4).

Proof. Let e = 1
2

(
u2 +Ω2 ϕ2 +Ω2 ω2

0 p
2
)
be the density of energy and E =

∫
R
e dx

be the total energy. The latter is written

En+1 − En = En+1/2 − En

︸ ︷︷ ︸
I1

+En+1 − En+1/2

︸ ︷︷ ︸
I2

.

During the first part of the splitting, the entropy inequality for the exact solution of
the Burgers equation satisfies in the sense of distributions

∂tu
2 + ∂xu

3/6 ≤ 0, u ∈ D′.

By integration in space, one obtains
∫
R

(
un+1/2

)2
dx ≤

∫
R
(un)

2
dx. Since ϕ and p are

constant during this step, it follows I1 ≤ 0. During the second part of the splitting,
the solution of the differential system (4.7) satisfies

∂te = −εΩ2 ϕ2.

Integrating the latter equation over [tn, tn+1] and approximating the r.h.s. yields

en+1 − en+1/2 = −
∫ tn+∆t

tn

εΩ2 ϕ2 dt ≤ −∆t εΩ2
(
ϕn+1/2

)2
+O(∆t)2.

Integration in space provides an inequality about I2. Summing the contributions of
I1 and I2 gives

(4.15)
En+1 − En

∆t
≤ −

∫

R

εΩ2
(
ϕn+1/2

)2
dx+O(∆t).

Passing to the limit, the inequality (4.4) is obtained.
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5. Weakly coupled systems in BVs. The system (2.4) studied along this
paper is a particular case of weakly coupled hyperbolic systems:

{
∂tui + ∂xfi(ui) = gi(U),(5.1a)

U(x, 0) = U0(x),(5.1b)

where i = 1, . . . , d, U = (u1, . . . , ud)
⊤, G(U) = (g1(U), . . . , gd(U))⊤ is a Lipschitz

function and U0 ∈ L∞. In the case of system (2.4), there is only one nonlinear flux
f1(u1) = u21/2, fi ≡ 0 for i > 1, and a linear source term.

Classical results about weakly coupled systems in L∞ are recalled. Then a new
result about the propagation of BVs regularity will be proven.

Definition 5.1 (Entropy solutions [32]). A function U in

L∞
loc(R× [0,+∞[,Rd) ∪ C0([0,+∞[, L1

loc(R,R
d)

is said to be an entropy solution of (5.1b) with initial data U0 = (u0i , · · · , u0d)⊤ if
for all diagonal convex entropy η(U) = (η1(u1), . . . , ηd(ud))

⊤, ηi convex for all i, and
for all diagonal nonnegative smooth function φ with compact support in R× [0,+∞[,
φ = (φ1, . . . , φd)

⊤, φi(x, t) ≥ 0, we have for all i = 1, . . . , d:

(5.2)

∫ +∞

0

∫

R

(
ηi(ui) ∂tφi + qi(ui) ∂xφi + η

′

(U) gi(U)φ
)
dx dt

+

∫

R

ηi(u
0
i (x))φi(x, 0) dx ≥ 0,

where q = (q1, · · · , qd)⊤ is the diagonal entropy-flux, with q′i = η′i f
′
i .

Theorem 5.2 (Existence and uniqueness for weakly coupled system [32]). The
system (5.1b) with the initial data U0 ∈ L∞(R,Rd) has one and only one entropy
solution U ∈ C0([0,+∞[, L1

loc(R,R
d)).

The reader is refered to [32] for the proof. The global existence is simply a
consequence of the global Lipschitz assumption on G. In the case of system (2.4),
weaker conditions than those of Theorem 5.2 were needed to prove existence and
uniqueness of the entropy solution. In Sec. 4, Theorem 4.3 has been proven indeed
with only one family of entropy.

Theorem 5.3 (BVs entropy solution). If the initial data U0 belongs to BVs(R,Rd)
for 0 < s ≤ 1, then the unique entropy solution U of (5.1b) belongs to

L∞
loc([0,+∞[,BVs(R,Rd)) ∩ Lipsloc([0,+∞[, L

1/s
loc (R,R

d)).

Proof. We follow the same lines than for the proof of Theorem 4.3. The Lipschitz
regularity of G ensures linear estimates. Again, a splitting scheme is used. Let us
explain on the first small interval of time [0,∆t] how to proceed:

1. U1/2 is the exact solution of the d decoupled scalar conservation laws:

(5.3)

{
∂tui + ∂xfi(ui) = 0,

ui(x, 0) = u0i (x),
i = 1, . . . , d.

2. U1 is the exact solution of the nonlinear ODE:

(5.4)

{
∂tU = G(U),

U(x, 0) = U1/2(x).
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The only point is to check that, for some constant c > 0,

(5.5) TV s(U1(.,∆t)) ≤ exp(c∆t)TV s(U1/2(.,∆t)) ≤ exp(c∆t)TV s(U0(., 0)).

For the first inequality, the Lipschitz stability w.r.t. to the initial data is used. Let
x < y be fixed, then for some c > 0 depending only on the G Lipschitz norm, one
has:

|U1(x,∆t) −U1(y,∆t)| ≤ exp(c∆t) |U1(x, 0)−U1(y, 0)|.

Thus TV s(U1(.,∆t)) ≤ exp(c p∆t)TV s(U1(., 0)) with p = 1/s. To conclude the
first inequality of (5.5), one notices the equality U1(., 0) = U1/2(.,∆t). The second
inequality of (5.5) is simply the TV s decay of all conservation laws [5]. Iterating the
argument concludes the proof.

6. Conclusion. Some questions remain open and deserve further mathematical
investigations:

• Is only one strictly convex entropy η sufficient to caracterize the unique en-
tropy solution of system (1.1)? This result has been proven for the first time
by Panov [33] for homogeneous conservation laws with a convex flux.

• The inequality of energy (4.4) can be understood as an entropy inequality.
This entropy does not depend only on u but on the three components. Is the
energy inequality enough to caracterize the unique entropy solution of system
(1.1)?

• The dissipative term in (1.1b) is purely phenomenological and it only accounts
for losses in the resonators. A more detailed modeling is needed to lead to a
quantitative agreement between simulations and experiments [35]




∂tu+ ∂x

(
au+ b

u2

2

)
= c ∂

−1/2
t ∂xu− Ω2 ∂tp,(6.1a)

∂2t p+ ε ∂
3/2
t p+ ω2

0 p−m∂2t p
2 + n |∂tp| ∂tp = u.(6.1b)

The visco-thermal losses in the tube and in the resonators are modeled by
fractional derivatives in time (coefficients c and ε). The nonlinear attenuation
at the neck of the resonators is also taken into account (coefficient n). The
analysis of (6.1) requires further efforts.
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