Asymptotic behavior of maximum likelihood estimators for a jump-type Heston model - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Asymptotic behavior of maximum likelihood estimators for a jump-type Heston model

Matyas Barczy
  • Fonction : Auteur
  • PersonId : 1050767
Gyula Pap
  • Fonction : Auteur
  • PersonId : 1050768

Résumé

We study asymptotic properties of maximum likelihood estimators of drift parameters for a jump-type Heston model based on continuous time observations, where the jump process can be any purely non-Gaussian L\'evy process of not necessarily bounded variation with a L\'evy measure concentrated on $(-1,\infty)$. We prove strong consistency and asymptotic normality for all admissible parameter values except one, where we show only weak consistency and mixed normal (but non-normal) asymptotic behavior. It turns out that the volatility of the price process is a measurable function of the price process. We also present some numerical illustrations to confirm our results.
Fichier principal
Vignette du fichier
1509.08869.pdf (741.9 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-02185354 , version 1 (13-02-2024)

Identifiants

Citer

Matyas Barczy, Mohamed Ben Alaya, Ahmed Kebaier, Gyula Pap. Asymptotic behavior of maximum likelihood estimators for a jump-type Heston model. 2024. ⟨hal-02185354⟩
281 Consultations
29 Téléchargements

Altmetric

Partager

More