Towards Algorithmic Analytics for Large-scale Datasets - Archive ouverte HAL
Article Dans Une Revue Nature Machine Intelligence Année : 2019

Towards Algorithmic Analytics for Large-scale Datasets

Résumé

The traditional goals of quantitative analytics cherish simple, transparent models to generate explainable insights. Large-scale data acquisition, enabled for instance by brain scanning and genomic profiling with microarray-type techniques, has prompted a wave of statistical inventions and innovative applications. Modern analysis approaches 1) tame large variable arrays capitalizing on regularization and dimensionality-reduction strategies, 2) are increasingly backed up by empirical model validations rather than justified by mathematical proofs, 3) will compare against and build on open data and consortium repositories, as well as 4) often embrace more elaborate, less interpretable models in order to maximize prediction accuracy. Here we review these trends in learning from "big data" and illustrate examples from imaging neuroscience.
Fichier principal
Vignette du fichier
NMI_data_manu_R2_final_nomarkup_.pdf (765.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02178410 , version 1 (09-07-2019)

Identifiants

Citer

Danilo Bzdok, Thomas E. Nichols, Stephen Smith. Towards Algorithmic Analytics for Large-scale Datasets. Nature Machine Intelligence, 2019, ⟨10.1038/s42256-019-0069-5⟩. ⟨hal-02178410⟩
235 Consultations
761 Téléchargements

Altmetric

Partager

More