Generation of Adapted Learning Game Scenarios: A Model-Driven Engineering Approach - Archive ouverte HAL
Chapitre D'ouvrage Année : 2019

Generation of Adapted Learning Game Scenarios: A Model-Driven Engineering Approach

Résumé

Adaptativity is a key-concern when developing serious games for learning purposes. It makes it possible to customize the game according to each learner individuality. To deal with adaptativity, this chapter proposes a Model-Driven Engineering approach that supports dynamic scenarization instead of implementing fixed configurations of learning scenarios. The base principle is to consider the generation of scenarios as a model transformation of a learner profile and a game description models toward adapted scenarios. This proposal has been applied to the context of the Escape-it! research project that aims to propose an “escape-room” game for helping children with Autistic Syndrome Disorder (ASD) to learn visual performance skills.
Fichier principal
Vignette du fichier
Laforcade_Laghouaouta_2019_Generation of Adapted Learning Game Scenarios.pdf (1.51 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02177667 , version 1 (21-07-2024)

Identifiants

Citer

Pierre Laforcade, Youness Laghouaouta. Generation of Adapted Learning Game Scenarios: A Model-Driven Engineering Approach. Bruce M. McLaren; Rob Reilly; Susan Zvacek; James Uhomoibhi. Computer Supported Education. 10th International Conference, CSEDU 2018, Funchal, Madeira, Portugal, March 15–17, 2018, Revised Selected Papers, 1022, Springer, pp.95-116, 2019, Communications in Computer and Information Science, 978-3-030-21150-9. ⟨10.1007/978-3-030-21151-6_6⟩. ⟨hal-02177667⟩
188 Consultations
14 Téléchargements

Altmetric

Partager

More