The double Gromov-Witten invariants of Hirzebruch surfaces are piecewise polynomial - Archive ouverte HAL
Article Dans Une Revue International Mathematics Research Notices Année : 2017

The double Gromov-Witten invariants of Hirzebruch surfaces are piecewise polynomial

Résumé

We define the double Gromov-Witten invariants of Hirzebruch surfaces in analogy with double Hurwitz numbers, and we prove that they satisfy a piecewise polynomiality property analogous to their 1-dimensional counterpart. Furthermore we show that each polynomial piece is either even or odd, and we compute its degree. Our methods combine floor diagrams and Ehrhart theory.

Dates et versions

hal-02175115 , version 1 (05-07-2019)

Identifiants

Citer

Federico Ardila, Erwan Brugallé. The double Gromov-Witten invariants of Hirzebruch surfaces are piecewise polynomial. International Mathematics Research Notices, 2017, 2, pp.614-641. ⟨10.1093/imrn/rnv379⟩. ⟨hal-02175115⟩
33 Consultations
0 Téléchargements

Altmetric

Partager

More