Fully packed loop configurations : polynomiality and nested arches - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2020

Fully packed loop configurations : polynomiality and nested arches

Résumé

This extended abstract proves that the number of fully packed loop configurations whose link pattern consists of two noncrossing matchings separated by m nested arches is a polynomial in m. This was conjectured by Zuber (2004) and for large values of m proved by Caselli et al. (2004)
Fichier principal
Vignette du fichier
final_103.pdf (315.19 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-02173795 , version 1 (04-07-2019)

Identifiants

Citer

Florian Aigner. Fully packed loop configurations : polynomiality and nested arches. 28-th International Conference on Formal Power Series and Algebraic Combinatorics, Simon Fraser University, Jul 2016, Vancouver, Canada. ⟨10.46298/dmtcs.6341⟩. ⟨hal-02173795⟩
49 Consultations
521 Téléchargements

Altmetric

Partager

More