Matrix product and sum rule for Macdonald polynomials - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2020

Matrix product and sum rule for Macdonald polynomials

Résumé

We present a new, explicit sum formula for symmetric Macdonald polynomials Pλ and show that they can be written as a trace over a product of (infinite dimensional) matrices. These matrices satisfy the Zamolodchikov– Faddeev (ZF) algebra. We construct solutions of the ZF algebra from a rank-reduced version of the Yang–Baxter algebra. As a corollary, we find that the normalization of the stationary measure of the multi-species asymmetric exclusion process is a Macdonald polynomial with all variables set equal to one.
Fichier principal
Vignette du fichier
final_4.pdf (286.09 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-02173390 , version 1 (04-07-2019)

Identifiants

Citer

Luigi Cantini, Jan de Gier, Michael Wheeler. Matrix product and sum rule for Macdonald polynomials. 28-th International Conference on Formal Power Series and Algebraic Combinatorics, Simon Fraser University, Jul 2016, Vancouver, Canada. ⟨10.46298/dmtcs.6419⟩. ⟨hal-02173390⟩
27 Consultations
606 Téléchargements

Altmetric

Partager

More