Asymptotic laws for knot diagrams - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2020

Asymptotic laws for knot diagrams

Résumé

We study random knotting by considering knot and link diagrams as decorated, (rooted) topological maps on spheres and sampling them with the counting measure on from sets of a fixed number of vertices n. We prove that random rooted knot diagrams are highly composite and hence almost surely knotted (this is the analogue of the Frisch-Wasserman-Delbruck conjecture) and extend this to unrooted knot diagrams by showing that almost all knot diagrams are asymmetric. The model is similar to one of Dunfield, et al.
Fichier principal
Vignette du fichier
final_74.pdf (233.13 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-02173389 , version 1 (04-07-2019)

Identifiants

Citer

Harrison Chapman. Asymptotic laws for knot diagrams. 28-th International Conference on Formal Power Series and Algebraic Combinatorics, Simon Fraser University, Jul 2016, Vancouver, Canada. ⟨10.46298/dmtcs.6329⟩. ⟨hal-02173389⟩
39 Consultations
701 Téléchargements

Altmetric

Partager

More