Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2020

On intervals of the consecutive pattern poset

Résumé

The consecutive pattern poset is the infinite partially ordered set of all permutations where σ ≤ τ if τ has a subsequence of adjacent entries in the same relative order as the entries of σ. We study the structure of the intervals in this poset from topological, poset-theoretic, and enumerative perspectives. In particular, we prove that all intervals are rank-unimodal and strongly Sperner, and we characterize disconnected and shellable intervals. We also show that most intervals are not shellable and have Mo ̈bius function equal to zero.
Fichier principal
Vignette du fichier
final_26.pdf (254.37 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-02173380 , version 1 (04-07-2019)

Identifiants

Citer

Sergi Elizalde, Peter R. W. Mcnamara. On intervals of the consecutive pattern poset. 28-th International Conference on Formal Power Series and Algebraic Combinatorics, Simon Fraser University, Jul 2016, Vancouver, Canada. ⟨10.46298/dmtcs.6380⟩. ⟨hal-02173380⟩
29 Consultations
590 Téléchargements

Altmetric

Partager

More