PSPACE-Completeness of a Thread Criterion for Cyclic Proofs in Linear Logic with Least and Greatest Fixed Points - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

PSPACE-Completeness of a Thread Criterion for Cyclic Proofs in Linear Logic with Least and Greatest Fixed Points

Résumé

In the context of logics with least and greatest fixed points, circular (ie. non-wellfounded but regular) proofs have been proposed as an alternative to induction and coinduction with explicit invariants. However, those proofs are not wellfounded and to recover logical consistency, it is necessary to consider a validity criterion which differentiates valid proofs among all preproofs (i.e. infinite derivation trees). The paper focuses on circular proofs for MALL with fixed points. It is known that given a finite circular representation of a non-wellfounded preproof, one can decide in PSPACE whether this preproof is valid with respect to the thread criterion. We prove that the problem of deciding thread-validity for µMALL is in fact PSPACE-complete. Our proof is based on a deeper exploration of the connection between thread-validity and the size-change termination principle, which is usually used to ensure program termination.
Fichier principal
Vignette du fichier
main (1).pdf (409.87 Ko) Télécharger le fichier

Dates et versions

hal-02173207 , version 1 (08-01-2021)

Identifiants

Citer

Rémi Nollet, Alexis Saurin, Christine Tasson. PSPACE-Completeness of a Thread Criterion for Cyclic Proofs in Linear Logic with Least and Greatest Fixed Points. TABLEAUX 2019 - 28th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods, Sep 2019, London, United Kingdom. ⟨10.1007/978-3-030-29026-9_18⟩. ⟨hal-02173207⟩
165 Consultations
148 Téléchargements

Altmetric

Partager

More