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Abstract. In the context of logics with least and greatest fixed points,
circular (ie. non-wellfounded but regular) proofs have been proposed as an
alternative to induction and coinduction with explicit invariants. However,
those proofs are not wellfounded and to recover logical consistency, it is
necessary to consider a validity criterion which differentiates valid proofs
among all preproofs (i.e. infinite derivation trees).
The paper focuses on circular proofs for MALL with fixed points. It is
known that given a finite circular representation of a non-wellfounded
preproof, one can decide in PSPACE whether this preproof is valid with
respect to the thread criterion. We prove that the problem of deciding
thread-validity for µMALL is in fact PSPACE-complete.
Our proof is based on a deeper exploration of the connection between
thread-validity and the size-change termination principle, which is usually
used to ensure program termination.

Keywords: sequent calculus · non-wellfounded proofs · circular proofs
· induction · coinduction · fixed points · linear logic · mu-MALL · size-
change · PSPACE-complete · complexity

1 Introduction

The search for proofs of formulas or theorems is one of the fundamental and
difficult tasks in proof theory. In the usual setting, those proofs should be easy
to check and thus finite. Induction and coinduction principles have been used in
order to provide such a finite proof theory for reasoning on formulas with least
or greatest fixed points (see Kozen [10, 11] and Baelde [2]). However in those
finite systems, the inference rule for greatest fixed points does not preserve the
subformula property. As a consequence, the proof search cannot be driven by the
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formula that we aim to prove. This is one reason why infinite proofs have been
considered for logic with fixed points. The price to pay is that the consistency
of the logical system is broken and that a validity criterion has to be added in
order to ensure consistency. However, checking the validity criterion might be
complex and the purpose of this paper is to show that it is PSPACE-complete.
Let us get into more details.

Circular proofs, which are infinite proofs satisfying the validity criteria, have
thus been proposed as an alternative to induction and coinduction with explicit
invariants. Circular proofs present the advantage over explicit induction or
coinduction to offer a framework in which it is possible to recover the good
structural properties of sequent calculus, such as cut-elimination, subformula
property and focusing, making them a more suitable tool to automated proof
search. Indeed, cut-elimination and focusing have recently been extended to non
well-founded proofs for µMALL by Baelde, Doumane and Saurin [3, 6].

Circular proofs have already proved useful in implementing efficient automatic
provers, e. g. the Cyclist prover [1]. However, the complexity avoided in the search,
thanks to the subformula property and the fact that we need not guess invariants,
is counterbalanced by the complexity of the validity criterion at the time of proof
checking.

There are already polynomial-space and exponential-time methods to decide
thread validity criterions in several settings, but there was no lower bound on its
complexity and the exact complexity of checking the thread criterion was still
unknown.

The contribution of this work is to show that, in the setting of linear logic with
least and greatest fixed point, the decidability of thread criterion is PSPACE-
complete.

Thread validity and size-change termination. Our proof takes a lot of inspiration
from the proof of PSPACE-completeness of size-change termination by Lee, Jones
and Ben Amram [12]: in order to prove that deciding size-change termination
is PSPACE-complete, they define a notion of boolean program and use the fact
that the following set is complete in PSPACE:

B = {b | b is a boolean program and b terminates.}

then they reduce B to the problem of size-change termination. We adapt their
method by reducing B to the problem of thread-validity in circular µMALLω

preproof.
It would be very interesting to get a more precise understanding of the relation

between threads in circular proofs and size-change termination.

Organization of the paper. In section 2 we recall the formulas and rules of linear
logic with least and greatest fixed points, as well as the notions of preproofs and
the thread validity criterion, and we recall that the thread criterion is effectively
decidable in PSPACE. The main section of the article is section 3, in which
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we show the PSPACE-completeness of the thread criterion for µMALLω, in
theorem 1. Section 4 is devoted to a discussion of our approach and a comparison
with related works. We conclude in section 5.

2 Background on Circular Proofs and Thread Validity

In this section, we recall the definition of the logic µMALLω.

2.1 Formulas

Formulas of µMALLω are selected among a set of preformulas. Preformulas of
µMALLω are obtained by taking the usual formulas of MALL and adding two
monadic second order binders, µ and ν:

Definition 1 (µMALLω preformulas).

A,B ::= X | A⊗B | A`B | 1 | ⊥ | A⊕B | A&B | 0 | > | µXA | νXA

where X ranges over an infinite set of propositional variables.

As usual, preformulas are considered modulo renaming of bound variables.
For instance, νX(X ⊗X) and νY (Y ⊗ Y ) denote the same preformula.

Definition 2 (µMALLω formulas). A formula is a closed preformula. We
denote by F the set of all formulas.

Definition 3 (µMALLω negation). An involutive negation ·⊥ is defined on
every µMALLω preformula, inductively specified by:

(A⊗B)⊥ = A⊥ `B⊥ 1⊥ = ⊥ X⊥ = X

(A⊕B)⊥ = A⊥ &B⊥ 0⊥ = > (µXA)⊥ = νXA⊥

Example 1. If A is any formula and F = νX(µY ((A ⊗ X) ` Y )) then F⊥ =
µX(νY ((A⊥ `X)⊗ Y )).

Remark 1. It may be counterintuitive that X⊥ = X. Yet, in practice negation
will only be applied to formulas, which are closed preformulas. This simple hack
allows us to avoid the use of negative atoms X,Y , . . . The fact that we have
only positive atoms garantees in turn that bound variables can only appear in
covariant position, thus avoiding the need for a positivity condition when forming
a fixed point formula.
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2.2 Sequents and Preproofs

Proofs of µMALLω are selected among a set of preproofs. Preproofs of µMALLω

are circular objects, defined by adding back-edges to ordinary proof-trees.

In this article, a sequent is a list of formulas. The inference rules of µMALLω

are given below

(id)

` A,A⊥
` A,Γ ` A⊥, ∆

(cut)
` Γ,∆

` Aσ(0), . . . , Aσ(n−1)
(exc)

` A0, . . . , An−1

` Γ,A ` ∆,B
(⊗)

` Γ,∆,A⊗B
` Γ,A,B

(`)
` Γ,A`B

(1)
` 1

` Γ
(⊥)

` Γ,⊥

` Γ,A
(⊕1)

` Γ,A⊕B
` Γ,B

(⊕2)
` Γ,A⊕B

` Γ,A ` Γ,B
(&)

` Γ,A&B
(>)

` Γ,>

` Γ,A[µXA[X]]
(µ)

` Γ, µXA[X]

` Γ,A[νXA[X]]
(ν)

` Γ, νXA[X]

Note that, in the exchange rule (exc), σ must be a permutation of {0, 1, . . . , n−1}.
The (exc) rules are generally left implicit in descriptions of proof trees.

Definition 4 (Π0(µMALLω): preproofs). A µMALLω preproof consists of a
finite proof tree π, composed using the rules given above, and which may have
open sequents5, together with a function back, which associate to each occurrence
s of an open sequent in π, an occurrence back(s) of the same sequent in π, such
that back(s) is strictly below s in π (i. e. closer to the root).

We denote by Π0(µMALLω) the set of all µMALLω preproofs.

Example 2. Let π be the following proof tree, with three open sequents, and let
us denote by s0, . . . , s8 its occurrences of sequents, as indicated:

s4 = ` νX(X `X), µXX

s6 = ` νXX, νX(X `X), µXX
(ν)

s5 = ` νXX, νX(X `X), µXX
(cut)

s3 = ` νX(X `X), νX(X `X), µXX
(`)

s2 = ` νX(X `X) ` νX(X `X), µXX
(ν)

s1 = ` νX(X `X), µXX

s8 = ` νXX
(ν)

s7 = ` νXX
(cut)

s0 = ` νX(X `X)

5 We call an occurrence of open sequent any occurrence of sequent which is not the
conclusion of an inference. In Example 2, s4, s6 and s8 are occurrences of open
sequents.
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then (π, {s4 7→ s1, s6 7→ s5, s8 7→ s7}) is a preproof of µMALLω, that we will
more simply denote by:

(0)

` νX(X `X), µXX

(1)

` νXX, νX(X `X), µXX
(ν)

(1) ` νXX, νX(X `X), µXX
(cut)

` νX(X `X), νX(X `X), µXX
(`)

` νX(X `X) ` νX(X `X), µXX
(ν)

(0) ` νX(X `X), µXX

(2)

` νXX
(ν)

(2) ` νXX
(cut)

` νX(X `X)

2.3 Proofs

The validity criterion used to distinguish proofs among preproofs is given in
Definition 11 and can be stated as: every infinite branch must contain a valid
thread. To make this formal, we will first define how a preproof induces two
graphs and then define the branches and threads of a preproof as infinite paths
in these graphs. Note that:

– In the following definitions, a graph always means a directed pseudograph,
i. e. a directed graph which may have loops and in which there may be several
edges between any pair of vertices.

– If (π,back) is a preproof, we say that an occurrence of a sequent in π is closed
when it is not an open sequent i. e. it is the conclusion of some inference in π.

Definition 5 (Gbranch, branch graph of a preproof). Let (π,back) be a
µMALLω preproof. Its branch graph is the graph Gbranch defined as follows. The
vertices of Gbranch are the occurrences of closed sequents in π. For each inference
I with conclusion s in π and for each premise s′ of I, there is an edge in Gbranch,
from s to s′ if s′ is a closed occurrence of sequent in π, and from s to back(s′)
if s′ is an open occurrence of sequent in π.

To clarify the following definition, remember that in every proof tree π, for
every inference I in π, every occurrence of formula α in a premise of I has a
unique immediate descendant in the conclusion of I, except if I is a cut and α is
a cut formula, in which case α has no immediate descendant.

Definition 6 (Gthread, thread graph of a preproof). Let (π,back) be a
µMALLω preproof. Its thread graph is the graph Gthread defined as follows. The
vertices of Gthread are the occurrences of formulas in the closed sequents of π.
For each inference I with conclusion s in π, for each premise s′ of I and for each
occurrence of formula β in s′ which has an immediate descendant α in s, there is
an edge in Gthread, from α to β if s′ is a closed occurrence of sequent in π, and
from α to the occurrence of the formula corresponding to β in back(s′) if s′ is
an open occurrence of sequent in π.



6 R. Nollet, A. Saurin, C. Tasson

Definition 7 (Infinite branch). If (π,back) is a preproof and Gbranch is its
branch graph, we call an infinite branch of this preproof any infinite path in
Gbranch starting from the root of π.

Example 3. The infinite branches of the preproof of Example 2 are s0(s7)ω,
s0(s1s2s3)ω and all elements of {s0(s1s2s3)k(s5)ω | k ∈ N}.

Note that, in order to be totally rigorous, we should

1. not only give the vertices of the paths but also the edges, i. e. when an
inference has several premises, indicate explicitly which one was chosen;

2. include the implicit (exc) rules.

These details are omitted here for concision; they will cause no ambiguity on the
validity of this preproof.

Definition 8 (Thread). A thread in a preproof is simply a path (finite or
infinite) in Gthread.

Example 4. Let us denote by {α, β, γ, . . . , µ} the vertices of Gthread for the
preproof shown on Example 2, as indicated here:

(0)

` νX(X `X), µXX

(1)

` νXX, νX(X `X), µXX
(ν)

(1) ` νXXι, νX(X `X)κ, µXXλ
(cut)

` νX(X `X)ζ , νX(X `X)η, µXXθ
(`)

` νX(X `X) ` νX(X `X)δ, µXXε
(ν)

(0) ` νX(X `X)β , µXXγ

(2)

` νXX
(ν)

(2) ` νXXµ
(cut)

` νX(X `X)α

The maximal threads of this preproof are (µ)ω, γεθ(λ)ω, (ι)ω, α(βδζ)ω and the
elements of {α(βδζ)kβδη(κ)ω | k ∈ N}.

Once again, in order to be totally rigorous, we should explicitly include the
occurrences of formulas in the sequents that are hidden by the elision of the (exc)

rules.

Definition 9 (U : Gthread → Gbranch). For any preproof, there is an obvious
graph morphism from Gthread to Gbranch, associating to every occurrence of a
formula the sequent occurrence it belongs to. We denote this graph morphism
by U. If t is a path in Gthread (i. e. a thread), we will also denote by U(t) the
corresponding path in Gbranch.

Remark 2. Even when t is an infinite thread, U(t) may not be an infinite branch
because it may not start at the root of the preproof. However, if t is an infinite
thread, then U(t) is a suffix of an infinite branch.

Example 5. The images, by this morphism, of the threads of Example 4 are

U((µ)ω) = (s7)ω U(γεθ(λ)ω) = s1s2s3(s5)ω U((ι)ω) = (s5)ω

U(α(βδζ)ω) = s0(s1s2s3)ω

∀k ∈ N,U(α(βδζ)kβδη(κ)ω) = s0(s1s2s3)k+1(s5)ω
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The following lemma is the key to the notion of a valid thread, which is
defined right after it. If s is an occurrence of formula in a proof tree, we denote
by fml(s) ∈ F the associated formula.

Lemma 1. Let t = (sn)n∈N be an infinite thread in a preproof. Let inf(t) =
{A ∈ F | ∀n0 ∈ N,∃n > n0, sn is principal and fml(sn) = A} i. e. the set of
formulas that are infinitely often principal in t.

If inf(t) 6= ∅, i. e. if t encounters infinitely often principal formulas, then it
contains a smallest infinitely principal formula, and this formula is a fixed point
formula : ∃σ ∈ {µ, ν},∃C, σXC ∈ inf(t) and ∀A ∈ inf(t), σXC is a subformula
of A. As a minimum, this formula is unique.

Definition 10 (Valid thread). An infinite thread t is valid if inf(t) is non-
empty and the smallest formula in inf(t) is a ν-formula (cf. Lemma 1 just above).

Example 6. Among the threads of Example 4:

– (µ)ω and (ι)ω are valid: their smallest infinitely principal formula is νXX;
– α(βδζ)ω is valid: its smallest infinitely principal formula is νX(X `X);
– γεθ(λ)ω is not valid: it has no principal formula;
– ∀k ∈ N, α(βδζ)kβδη(κ)ω is not valid: it has no principal formula after the

last occurrence of β.

Definition 11 (Π(µMALLω): proofs). We say that an infinite branch b of a
preproof $ is valid if there is a valid infinite thread t of $ such that U(t) is a
suffix of b.

A µMALLω preproof $ is a proof if all its infinite branches are valid.
We denote by Π(µMALLω) the set of all µMALLω proofs and we denote

by Π(µMALLω) its complement in Π0(µMALLω), i. e. the set of all invalid
preproofs.

Example 7. The preproof of Example 2 is a proof:

– the branch s0(s7)ω contains the valid thread (µ)ω;
– the branch s0(s1s2s3)ω contains the valid thread (βγζ)ω;
– ∀k ∈ N, the branch s0(s1s2s3)k(s5)ω contains the valid thread (ι)ω.

2.4 Deciding Thread Validity in PSPACE

In this section, we recall the fact that the problem Π(µMALLω) is in PSPACE.
Several algorithms can be used for that. Here we reduce this problem to the
problem of deciding equality of languages for parity ω-automata, which is known
to be in PSPACE. More precisely, given a preproof $, we define two parity
automata: the language of the first one is the set of infinite branches of $ and
the language of the second one is the set of valid infinite branches of $.

Let $ = (π,back) be a preproof. Let A = Ebranch, the set of edges of Gbranch;
this will be the input alphabet of our automata.

The first ω-automaton is Abranch = 〈Qbranch, ibranch, Tbranch〉, where:
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– the set of states is Qbranch = Vbranch, the set of vertices of Gbranch

– the initial state ibranch is the root of π
– the set of transitions is

Tbranch = {s e−→ s′ | e is an edge from s to s′ in Gbranch}

and the acceptance condition is trivial: every infinite run is accepted. With that
definition, the following lemma is immediate:

Lemma 2. The language L(Abranch) is the set of infinite branches of $.

For our second automaton, we need a priority assignment Ω : F → N with
two properties:

1. if A is a subformula of B then Ω(A) 6 Ω(B);
2. ∀A,Ω(µXA) is even and Ω(νXA) is odd.

Such a function is not difficult to construct.From now on we assume that one
has been chosen.

Our second automaton is a parity ω-automaton, with priorities in N ∪ {∞},
defined as Athread = 〈Qthread, ithread, Tthread〉, where:

– the set of states is Qthread = Vthread + {⊥s | s ∈ Vbranch}, i. e. the vertices of
Gthread plus one extra vertex for each vertex of Gbranch

– the initial state is ithread = ⊥r where r is the root of π
– the set of transitions is

Tthread = {⊥s
e : ∞−→ ⊥s′ | e is an edge from s to s′ in Gbranch}

∪ { α β
U(e) : Ω(α) |

e is an edge from α to β in Gthread and α is principal}

∪ { α β
U(e) : ∞ |

e is an edge from α to β in Gthread and α is not principal}

∪ {⊥s
ε : ∞−→ α | s = U(α)}

where q
e : i−→ q′ denote a transition from state q ∈ Qthread to state q′ ∈ Qthread

with label e ∈ A and priority i ∈ N ∪ {∞}.
The acceptance condition is: a run is accepted if the smallest priority appearing
infinitely often is odd (∞ being even).

Once again, it should be clear from Definitions 10 and 11 that:

Lemma 3. The language L(Athread) is the set of valid infinite branches of $.

From these two lemmas it is immediate that

Proposition 1. We have the inclusion L(Athread) ⊆ L(Abranch) and the pre-
proof $ is valid iff. this inclusion is an equality.

Deciding this equality can be done in PSPACE, and the constructions of these
automata are obviously PSPACE, so:

Proposition 2. The problem Π(µMALLω) is in PSPACE.
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3 PSPACE-Completeness

3.1 Outline of the PSPACE-Completeness Proof

We now aim at proving that Π(µMALLω) is PSPACE-complete for LOGSPACE
reductions. As it is already known that Π(µMALLω) ∈ PSPACE, it remains to
prove that we have PSPACE 6L Π(µMALLω).

We follow the same methodology as Lee, Jones and Ben Amram [12]: in
order to prove that deciding size-change termination is PSPACE-complete, they
define a notion of boolean program (see Definition 12) and use the fact that the
following problem is complete in PSPACE:

B = {b | b is a boolean program and b terminates.}

then they reduce B to the decidability of size-change termination.
We try to adapt their method by reducing B to Π(µMALLω).

3.2 Defining the Reduction

Let us first introduce boolean programs.

Definition 12 (BOOLEfalse and Bfalse). A boolean program in BOOLE is a se-
quence of instructions b = 1:I1 2:I2 . . . m:Im where an instruction can have one
of the two following forms:

I ::= X := ¬X | if X then goto `′ else goto `′′

where X ranges over a finite set of variable names and labels `′, `′′ range overs
{0, . . . ,m}.

The semantics is as expected: a program is executed together with a store
assigning values to variables which shall initially assign all variables to false

at the beginning of the execution (this is the initial store). More precisely, an
execution is a sequence of pairs (`, s) of a label and a store subject to the expected
transitions (`1, s1)→ (`2, s2) if `1 6= 0 and:

– if I`1 = X := ¬X, then `2 = `1 + 1 (mod m+ 1) and s2(Y ) = s1(Y ) for all
variable Y 6= X and S2(X) = ¬(s1(X));

– if I`1 = if X then goto `′ else goto `′′ then s2 = s1 and `2 = `′ if s1(X) = true

and `2 = `′′ otherwise.

The program terminates when the label reaches 0, the current store at termination
is the final store.

A program in BOOLEfalse is a program in BOOLE such that, if it terminates, its
final store is such that all variables have value false. We also denote the set of
terminating BOOLEfalse programs as:

Bfalse = {b ∈ BOOLEfalse | b terminates}.
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Remark 3. The constraint on the values of the variables at the end of the program
will be useful when reducing it to Π(µMALLω). This circular preproof will encode
the fact that the program b is terminating by connecting the final state to the
initial one, hence the necessity that its initial and terminal states are the same.

Lemma 4. Bfalse is PSPACE-hard under LOGSPACE-reductions:

PSPACE 6L Bfalse
Proof. We reduce from the problem of termination for a more expressive language,
which has been defined and proved PSPACE-complete by Jones in [9], under the
name of BOOLE.

The following definition will be used in the proof of Proposition 3:

Definition 13 (Call graph of a program). Assume a boolean program b with
variables X1, . . . , Xk and instructions 1 : I1, . . . , m : Im. Define the call graph of b
to be G = (V,E) with

– V = {0, 1, . . . ,m}
– E = {0 0→ 1}

∪ {` `→ ((`+ 1) mod (m+ 1)) | I` = X := not X}

∪ {` `
+

→ `′, `
`−→ `′′ | I` = if X goto `′ else `′′}

Definition 14 (J·K : BOOLEfalse → Π0(µMALLω)). For every boolean program
b ∈ BOOLEfalse , we define a preproof JbK ∈ Π0(µMALLω). Let X1, . . . , Xk be
the variables of b and 1 : I1, . . . , m : Im its instructions. We first give names
to the formulas that will appear in JbK: we define a unary operation ¿, three
formulas A,B,C, a family of unary operations (¿n) and two families of formulas
(Dn), (En):

A = ¿(νX¿X) B = νX(⊥⊕X) C = µX(B `X) En = ¿n(νX¿nX)

¿F = µX(F ⊕ (⊥⊕ (X `X))) ¿nF = µX(⊥⊕ (X ` (F ` · · ·` F︸ ︷︷ ︸
n−1

)))

Dn = µX(X & · · ·&X︸ ︷︷ ︸
n

)

We now define JbK to be the preproof

J0:K

` A2k, B,C,D2, Dm, E
m
m

J1 : I1K

` A2k, B,C,D2, Dm, E
m
m

. . . Jm : ImK

` A2k, B,C,D2, Dm, E
m
m

(µ), (&)
m−1

(Root) ` A2k, B, C,D2, Dm, E
m
m

(1)

where Γn is an abbreviation for Γ, . . . , Γ︸ ︷︷ ︸
n

.

The root of the preproof JbK is constructed by translating each pair `:I` of a
label and an instruction into a finite segment of branch of preproof, as defined in
eq. (1), with each subderivation J`:I`K defined in Fig. 2 and each subderivation
J`:goto `′K in Fig. 1.



PSPACE-Completeness of a Thread Criterion for Circular Proofs 11

J`:goto `′K =
Back-edge to (Root)

` A2k, B,C,D2, Dm, Em, . . . , Em
(ν)

m−1

` A2k, B,C,D2, Dm, (νX¿mX)`
′−1, Em, (νX¿mX)m−`

′

(µ), (⊕2), (`)
m−1

` A2k, B,C,D2, Dm, Em
((µ), (⊕1), (⊥))m−1

` A2k, B,C,D2, Dm, Em
`−1, Em, Em

m−`

Fig. 1. Back-edges of the preproof

Remark 4 (Implicit vs. explicit exchange rules). Notice that in the translation
of the previous definition, our derivations make an implicit use of the exchange
rule. In order to make explicit the exchange, it is enough to add an exchange
rule at the conclusion of every inference in the proof, simply doubling the size of
the proof. This will therefore have no impact on the forthcoming reductions and
completeness proofs that will be studied in the remaining of the paper.

Remark 5 (Infinite branches of JbK ' Eω). The preproof JbK constructed from b
by the reduction J·K of Definition 14 is a finite tree with back-edges in which every
finite branch ends with a back-edge to the root. This finite tree has exactly as
many branches, and, consequently, as many back-edges to the root as the number
CardE of edges in the call-graph of b (Definition 13). This in turn entails that
the set of infinite branches of the preproof JbK is in one-to-one correspondence
with the set Eω of infinite words on E. Note however that an infinite word
u ∈ Eω has no reason a priori to be a path in G.

From now on, we will refer directly to infinite branches of the preproof by
words u ∈ Eω.

3.3 Main Theorem

We now prove that Π(µMALLω) is PSPACE-complete.

Remark 6 (Thread groups). We need to be more precise about the occurrences
of formulas in the conclusion sequent of preproof JbK:

A, . . . , A︸ ︷︷ ︸
2k

, B, C,D2, Dm, Em, . . . , Em︸ ︷︷ ︸
m

Let us label the occurrences of A in this sequent as follows:

A+
1 , A

−
1 , . . . , A

+
k , A

−
k , B,C,D2, Dm, Em, . . . , Em︸ ︷︷ ︸

m

so that we can talk precisely about them. It can be seen by examining the
definition of J·K (Definition 14) that a valid thread in the preproof cannot pass
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J0:K =

J0:goto 1K

` (A,A)k, B,C,D2, Dm, E
m
m

(ν)
k

` (νX¿X,A)k, B,C,D2, Dm, E
m
m

((µ), (⊕1))k

` (A,A)k, B,C,D2, Dm, E
m
m

((µ), (⊕2), (⊕2), (`))k

` Ak, B,C,D2, Dm, E
m
m

((µ), (⊕2), (⊕1), (⊥))k

` (A,A)k, B,C,D2, Dm, E
m
m

(µ), (`)

` A2k, C,D2, Dm, E
m
m

(ν), (⊕1), (⊥)

` A2k, B,C,D2, Dm, E
m
m

J`:Xi := not XiK =

J`:goto (`+ 1 mod m+ 1)K

` A2k, B,C,D2, Dm, E
m
m

(exc)
` A2(i−1), A,A,A2(k−i), B,C,D2, Dm, E

m
m

(ν), (⊕2)

` A2k, B,C,D2, Dm, E
m
m

J`:if Xi then goto `′ else `′′K =

J`:goto `′K

` A2(i−1), A,A,A2(k−i), B,C,D2, Dm, E
m
m

(ν)

` A2(i−1), A, νX(¿X), A2(k−i), B,C,D2, Dm, E
m
m

(µ), (⊕1)

` A2(i−1), A,A,A2(k−i), B,C,D2, Dm, E
m
m

J`:goto `′′K

` A2(i−1), A,A,A2(k−i), B,C,D2, Dm, E
m
m

(ν)

` A2(i−1), νX(¿X), A,A2(k−i), B,C,D2, Dm, E
m
m

(µ), (⊕1)

` A2(i−1), A,A,A2(k−i), B,C,D2, Dm, E
m
m

(µ), (&)

` A2k, B,C,D2, Dm, E
m
m

(ν), (⊕2)

` A2k, B,C,D2, Dm, E
m
m

Fig. 2. Premises p` of the preproof

through D2 or Dm, which contain no ν, and that the remaining formulas are
divided into k + 2 groups

A+
1 , A

−
1︸ ︷︷ ︸, . . . , A+

k , A
−
k︸ ︷︷ ︸, B,C︸︷︷︸, Em, . . . , Em︸ ︷︷ ︸

which cannot thread-interact with each other, in the sense that, for instance, no
thread can contain a B and a Em, or a Aε` and a Aε

′

`′ if ` 6= `′.

Lemma 5. An infinite branch u ∈ Eω in the preproof contains a validating
thread

– in the Em group iff. no suffix of u is a valid path in G.
– in the B,C group iff. 0 occurs only finitely in u.

Proof (Proof sketch). By case on the instructions involved.
In order to prove the first part of the statement, that is that an infinite branch

u ∈ Eω in the preproof contains a validating thread in the Em group iff. no suffix
of u is a valid path in G, we reason by case on the instructions involved and
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remark that the Em formulas are touched only in the J`:goto `′K parts of the
preproof.

In order to prove the second part of the statement, that is that an infinite
branch u ∈ Eω in the preproof contains a validating thread in the B,C group iff.
0 occurs only finitely in u, we reason by case on the instructions involved.

Remark 7. Because of lemma 5, the only infinite branches of JbK whose validity is
not known in advance are the u ∈ Eω which are valid paths in G going infinitely
many times through edge 0, and we know that these infinite branches may have
validating threads only in one of the k groups {A+

i , A
−
i }16i6k. Such an infinite

branch can always be factorized into u00u10u20 · · · where the un do not contain

0. As the edge 0 ∈ E has source and target 0
0−→ 1, and because of the hypothesis

that u is a path in G, for n > 1 every un has source and target 1
un−→+ 0.

Lemma 6. Assume 1
u−→+ `, which does not contain the edge 0. If u is a prefix

of the execution of b then the threads of {A+
i , A

−
i } in 0

0u−→+ ` are

A+
i A−i

A+
i A−i

νX¿X A

if Xi = false at the end of u and

A+
i A−i

A+
i A−i

A νX¿X

if Xi = true at the end of u; and if u is not a prefix of the execution of b then

there is an i ∈ J1,mK such that the threads of {A+
i , A

−
i } in 0

0u−→+ ` are

A+
i A−i

A+
i A−i

νX¿X νX¿X

Proof (Proof sketch). The proof goes by induction on the length of u.

The diagrams we use here are sketches of the thread structure of a segment of
branch. For instance the first of these diagrams should be read as: the occurrence
A−i in the conclusion sequent is a descendant of both occurrences A+

i and A−i
in the sequent at the top of the segment of branch we consider. The smallest
principal formula along the segment of thread from the lower A−i to the upper
A+
i is νX¿X and the smallest principal formula along the segment of thread from

the lower A−i to the upper A−i is A. The occurrence A+
i in the lower sequent is

not a descendant of any of the occurrences A+
i nor A−i in the upper sequent.
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Proposition 3. J·K is a LOGSPACE reduction from Π(µMALLω) to Bfalse .

Proof. For the LOGSPACE character: the only data that need to be remembered
while constructing the preproof are integers like k, m, `, `′. As `, `′ 6 m and the
entry has size Ω(k +m), this takes a space at most logarithmic in the size of the
entry.

As for the fact that it is indeed a reduction: let us assume a b ∈ BOOLEfalse and
prove that JbK /∈ Π(µMALLω) ⇔ b ∈ Bfalse . Let G = (V,E) be the call-graph
of b, as defined in Definition 13. Following remark 5, we denote by elements of
Eω the infinite branches of JbK. There are two cases: either b ∈ Bfalse and we
have to prove that p /∈ Π(µMALLω), or b /∈ Bfalse and we have to prove that
p ∈ Π(µMALLω). First case: if b ∈ Bfalse : the execution of b induces a finite path

u = 1→∗ 0 in G. This finite path can be completed into v = 0
0→ 1

u−→∗ 0. Then
vω is an invalid branch of JpKω. Here we use the fact that when b terminates, every
variable has value false. Second case: if b /∈ Bfalse : let P1 = {vw∞ | v ∈ E∗, w∞ ∈
Eω and w∞ is a path in G} and P2 = {v∞ ∈ P1 | 0 occurs infinitely in v∞}.
By construction, P2 ⊆ P1 ⊆ Eω. We will prove three facts: that every branch
v∞ ∈ Eω \ P1 is thread-valid, that every branch v∞ ∈ P1 \ P2 is thread-valid
and that every branch v∞ ∈ P2 is thread-valid. These three facts, together with
the fact that (Eω \P1)∪ (P1 \P2)∪P2 = Eω, are enough to conclude that every
branch v∞ ∈ Eω is thread-valid. The first fact, that every branch v∞ ∈ Eω \ P1

is thread-valid, is due to the thread going through the Em. The second fact, that
every branch v∞ ∈ P1 \ P2 is thread-valid, is due to the thread going through
B. The third fact, that every branch v∞ ∈ P2 is thread-valid, is due to the fact
that b is non-terminating and that, because of that, one of the 2k threads going
through the A is valid.

Theorem 1. The problem Π(µMALLω) is PSPACE-hard under LOGSPACE
reductions :

PSPACE 6L Π(µMALLω)

Proof. We reduce from Bfalse , which is PSPACE-complete by Lemma 4. More

precisely, we reduce Bfalse to Π(µMALLω), the complement of Π(µMALLω).
This is enough because PSPACE is closed under complements, in the same way
as all deterministic classes. The reduction J·K : BOOLEfalse → Π0(µMALLω) is
defined in Definition 14. It is indeed a LOGSPACE reduction by Proposition 3.

Remark 8. In fact, since our construction do not use the (cut) rule, the cut-free
fragment of Π(µMALLω) is already PSPACE-hard.

Remark 9. Our result extends to µLJ, µLK, µLK© and µLK�♦ and we con-
jecture that the method we illustrate here on µMALL can apply as well to the
guarded cases of µ-calculi with modalities.
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4 Comments on our Approach and Discussion of Related
Works

Our proof for the PSPACE-completeness of the thread criterion is an encoding
and an adaptation to our setting of the proof used by Lee, Jones and Ben Amram
to prove that size-change termination is PSPACE-complete [12]. We reduce, as
they do, from the problem of termination of boolean programs and the thread
diagrams that we have used to describe the preproof generated by the reduction
are very similar to the size-change graphs generated by their reduction; this is in
fact what has guided the design of this preproof: formula A mimicks the Xi, Xi
part of their graphs and formulas B and C adapt the Z part of their graphs. We
had to add the formulas D2 and Dm in order to have branching rules in the
preproof. One of the main novelties of our reduction, compared to the reduction
of Lee, Jones and Ben Amram for size-change termination, lies in the Em and
J`:goto `′K part of the constructed preproof, which has no equivalent in the size-
change graphs obtained by their reduction. This part of our construction allows
us to construct a preproof which is a tree with back-edges, hence proving that
the thread criterion is PSPACE-complete even when preproofs are represented
by trees with back-edges. We could in fact drop the Em and J`:goto `′K part
of the construction by constructing JbK as a rooted graph instead of a tree with
back-edges. The constructions proofs are still correct — and shorter. The caveat
is that it only proves the thread-criterion to be PSPACE-hard in graph-shaped
preproofs and not in tree-with-back-edges-shaped preproofs. Furthermore, we
could not have filled this gap by simply unfolding the graph into a tree with
back-edges, for it could lead, as shown in the following example, to an exponential
blow-up in size, which would prevent the reduction to be LOGSPACE, or even
PTIME. The following boolean program:

1:if X then goto 2 else goto 2
2:if X then goto 3 else goto 3

...
n:if X then goto n+ 1 else goto n+ 1

will be translated to a graph-shaped preproof of size Θ(n) but the unfolding of
this preproof into a tree-with-back-edges-shaped preproof will have size Θ(2n).
Therefore we had to be clever in order to target trees with back-edges by simulating
several vertices with a single one; this is accomplished by the Em and J`:goto `′K.

This improvement of the reduction of Lee, Jones and Ben Amram could in
fact be adapted in the other direction, to show that size-change termination
is already PSPACE-complete even when restricted to programs with only one
function (in the terminology of [12]), that is when the corresponding call graph /
control flow graph has only one vertex.

If, as it is commonly believed, NP 6= PSPACE, our result implies that there
is no way to add a polynomial quantity of information to a preproof so that
its thread-validity can be checked in polynomial time. This can be seen as a
problem, both for the complexity of proof search and proof verification. It suggests
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trying to find restrictions of the thread criterion which will be either decidable
or certifiable in polynomial time, while keeping enough expressivity to validate
interesting proofs. A first step in this direction has already been done in [14].

We recalled in section 2.4 that thread validity is decidable in PSPACE, and
we did so by reducing to the problem of language inclusion for ω-parity-automata.
The original size-change article [12] gives two different methods to check size-
change termination, the first one is based on reducing to inclusions of ω-languages
defined by finite automata while the second one is a direct, graph-based approach.
It is in fact possible to use this more direct method to decide the thread criterion,
and this has already been done in [5] by Dax, Hofmann and Lange, who remark
furthermore that this method leads to a more efficient implementation than the
automata-based one.

5 Conclusion

In the present paper, we analyzed the complexity of deciding the validity of
circular proofs in µMALL logic: while the problem was already known to be in
PSPACE, we established here its PSPACE-completeness. In doing so, we drew
inspiration from the PSPACE-completeness proof of size-change termination even
though we depart at some crucial points in order to build our reduction to take
into account the specific form of circular proofs.

We conjecture that our proof adapts straightforwardly to a number of other
circular proof systems based on sequent calculus such as intutionistic or classical
proof systems in addition to the linear case on which we have focused here.

While our result can be seen as negative for circular proofs, it does not prevent
actual implementations from being tractable and usable in many situations as
exemplified by the Cyclist prover for instance. In such systems, validity checking
does not seem to be the bottleneck in circular proof construction compared with
the complexity that is inherent in exploring and backtracking in the search tree [4,
15, 16].

Our work suggests deep connections between thread-validity and size-change
termination, which we only touched upon in the previous section. This con-
firms connections previously hinted by other authors [5, 7, 8, 13] that we plan to
investigate further in the future.
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