Bridging the gap between reference and real transcriptomes
Résumé
Genetic, transcriptional, and post-transcriptional variations shape the transcriptome of individual cells, rendering establishing an exhaustive set of reference RNAs a complicated matter. Current reference transcriptomes, which are based on carefully curated transcripts, are lagging behind the extensive RNA variation revealed by massively parallel sequencing. Much may be missed by ignoring this unreferenced RNA diversity. There is plentiful evidence for non-reference transcripts with important phenotypic effects. Although reference transcriptomes are inestimable for gene expression analysis, they may turn limiting in important medical applications. We discuss computational strategies for retrieving hidden transcript diversity.