The colored symmetric and exterior algebras - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2020

The colored symmetric and exterior algebras

Résumé

In this extended abstract we present colored generalizations of the symmetric algebra and its Koszul dual, the exterior algebra. The symmetric group Sn acts on the multilinear components of these algebras. While Sn acts trivially on the multilinear components of the colored symmetric algebra, we use poset topology techniques to describe the representation on its Koszul dual. We introduce an Sn-poset of weighted subsets that we call the weighted boolean algebra and we prove that the multilinear components of the colored exterior algebra are Sn- isomorphic to the top cohomology modules of its maximal intervals. We show that the two colored Koszul dual algebras are Koszul in the sense of Priddy et al.
Fichier principal
Vignette du fichier
final_81.pdf (362.2 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-02168298 , version 1 (28-06-2019)

Identifiants

Citer

Rafael S. Gonzalez d'Leon. The colored symmetric and exterior algebras. 28-th International Conference on Formal Power Series and Algebraic Combinatorics, Simon Fraser University, Jul 2016, Vancouver, Canada. ⟨10.46298/dmtcs.6342⟩. ⟨hal-02168298⟩
60 Consultations
800 Téléchargements

Altmetric

Partager

More