Separation of Variables and the Computation of Fourier Transforms on Finite Groups, II - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2020

Separation of Variables and the Computation of Fourier Transforms on Finite Groups, II

Résumé

We present a general diagrammatic approach to the construction of efficient algorithms for computing the Fourier transform of a function on a finite group. By extending work which connects Bratteli diagrams to the construction of Fast Fourier Transform algorithms we make explicit use of the path algebra connection and work in the setting of quivers. In this setting the complexity of an algorithm for computing a Fourier transform reduces to path counting in the Bratelli diagram, and we generalize Stanley's work on differential posets to provide such counts. Our methods give improved upper bounds for computing the Fourier transform for the general linear groups over finite fields, the classical Weyl groups, and homogeneous spaces of finite groups.

Mots clés

Fichier principal
Vignette du fichier
final_16.pdf (310.99 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-02166353 , version 1 (26-06-2019)

Identifiants

Citer

David Maslan, Daniel N. Rockmore, Sarah Wolff. Separation of Variables and the Computation of Fourier Transforms on Finite Groups, II. 28-th International Conference on Formal Power Series and Algebraic Combinatorics, Simon Fraser University, Jul 2016, Vancouver, Canada. ⟨10.46298/dmtcs.6372⟩. ⟨hal-02166353⟩
30 Consultations
774 Téléchargements

Altmetric

Partager

More