Strange Expectations and Simultaneous Cores - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2020

Strange Expectations and Simultaneous Cores

Résumé

Let gcd(a, b) = 1. J. Olsson and D. Stanton proved that the maximum number of boxes in a simultaneous (a, b)-core is (a2 −1)(b2 −1) 24, and showed that this maximum is achieved by a unique core. P. Johnson combined Ehrhart theory with the polynomial method to prove D. Armstrong's conjecture that the expected number of boxes in a simultaneous (a, b)-core is (a−1)(b−1)(a+b+1) 24. We apply P. Johnson's method to compute the variance and third moment. By extending the definitions of “simultaneous cores” and “number of boxes” to affine Weyl groups, we give uniform generalizations of these formulae to simply-laced affine types. We further explain the appearance of the number 24 using the “strange formula” of H. Freudenthal and H. de Vries.

Mots clés

Fichier principal
Vignette du fichier
final_102.pdf (370.62 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-02166326 , version 1 (26-06-2019)

Identifiants

Citer

Marko Thiel, Nathan Williams. Strange Expectations and Simultaneous Cores. 28-th International Conference on Formal Power Series and Algebraic Combinatorics, Simon Fraser University, Jul 2016, Vancouver, Canada. ⟨10.46298/dmtcs.6364⟩. ⟨hal-02166326⟩
110 Consultations
756 Téléchargements

Altmetric

Partager

More