Metric completion of $Diff([0,1])$ with the $H1$ right-invariant metric - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Metric completion of $Diff([0,1])$ with the $H1$ right-invariant metric

Résumé

We consider the group of smooth increasing diffeomorphisms Diff on the unit interval endowed with the right-invariant $H^1$ metric. We compute the metric completion of this space which appears to be the space of increasing maps of the unit interval with boundary conditions at $0$ and $1$. We compute the lower-semicontinuous envelope associated with the length minimizing geodesic variational problem. We discuss the Eulerian and Lagrangian formulation of this relaxation and we show that smooth solutions of the EPDiff equation are length minimizing for short times.
Fichier principal
Vignette du fichier
CHRelaxation.pdf (250.32 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02161686 , version 1 (21-06-2019)

Identifiants

Citer

Simone Di Marino, Andrea Natale, Rabah Tahraoui, François-Xavier Vialard. Metric completion of $Diff([0,1])$ with the $H1$ right-invariant metric. 2019. ⟨hal-02161686⟩
98 Consultations
161 Téléchargements

Altmetric

Partager

More