Nonautonomous fractional Hamiltonian system with critical exponential growth - Archive ouverte HAL
Article Dans Une Revue Nonlinear Differential Equations and Applications Année : 2019

Nonautonomous fractional Hamiltonian system with critical exponential growth

Résumé

In this paper, we study the following nonlocal nonautonomous Hamiltonian system on whole R (−∆) 1 2 u + u = Q(x)g(v) in R, (−∆) 1 2 v + v = P (x)f (u) in R, where (−∆) 1 2 is the square root Laplacian operator. We assume that the nonlinearities f, g have critical growth at +∞ in the sense of Trudinger-Moser inequality and the nonnegative weights P (x) and Q(x) vanish at +∞. Using suitable variational method combined with the generalized linking theorem, we obtain the existence of at least one positive solution for the above system. Mathematics Subject Classification (2010). Primary 35J50, 35R11, 35A15. Keywords. elliptic systems involving square root of the Laplacian, critical growth nonlinearities of Trudinger-Moser type, linking theorem.
Fichier principal
Vignette du fichier
FractionalHamiltonianSystem-submission.pdf (395.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02160391 , version 1 (19-06-2019)

Identifiants

Citer

João Marcos, Jacques Giacomoni, Pawan Kumar Mishra. Nonautonomous fractional Hamiltonian system with critical exponential growth. Nonlinear Differential Equations and Applications, In press, ⟨10.1007/s00030-019-0575-5⟩. ⟨hal-02160391⟩
46 Consultations
146 Téléchargements

Altmetric

Partager

More