A potential function for computer simulation studies of proton transfer in acetylacetone - Archive ouverte HAL
Article Dans Une Revue Journal of Computational Chemistry Année : 1997

A potential function for computer simulation studies of proton transfer in acetylacetone

Résumé

A potential energy model is developed to study the intramolecular proton transfer in the enol form of acetylacetone. It makes use of the empirical valence bond approach developed by Warshel to combine standard molecular mechanics potentials for the reactant and product states to reproduce the interconversion between these two states. Most parameters have been fitted to reproduce the key features of an ab initio potential surface obtained from 4‐31G* Hartree‐Fock calculations. The partial charges have been fitted to reproduce the electrostatic potential surface of 6‐31G* Hartree‐Fock wave functions, subject to total charge and symmetry constraints, using a fitting procedure based on generalized inverses. The resulting potential energy function reproduces the features most important for proton transfer simulations, while being several orders of magnitude faster in evaluation time than ab initio energy calculations. © 1997 by John Wiley & Sons, Inc.

Dates et versions

hal-02159788 , version 1 (19-06-2019)

Identifiants

Citer

Konrad Hinsen, Benoît Roux. A potential function for computer simulation studies of proton transfer in acetylacetone. Journal of Computational Chemistry, 1997, 18 (3), pp.368-380. ⟨10.1002/(SICI)1096-987X(199702)18:3<368::AID-JCC7>3.0.CO;2-S⟩. ⟨hal-02159788⟩

Collections

TDS-MACS
24 Consultations
0 Téléchargements

Altmetric

Partager

More