Streaming constrained binary logistic regression with online standardized data - Archive ouverte HAL
Article Dans Une Revue Journal of Applied Statistics Année : 2022

Streaming constrained binary logistic regression with online standardized data

Résumé

Online learning is a method for analyzing very large datasets ("big data") as well as data streams. In this article, we consider the case of constrained binary logistic regression and show the interest of using processes with an online standardization of the data, in particular to avoid numerical explosions or to allow the use of shrinkage methods. We prove the almost sure convergence of such a process and propose using a piecewise constant step-size such that the latter does not decrease too quickly and does not reduce the speed of convergence. We compare twenty-four stochastic approximation processes with raw or online standardized data on five real or simulated data sets. Results show that, unlike processes with raw data, processes with online standardized data can prevent numerical explosions and yield the best results.
Fichier principal
Vignette du fichier
Article_online logistic regression_20p_20201009.pdf (461.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02156324 , version 1 (14-06-2019)
hal-02156324 , version 2 (10-07-2020)
hal-02156324 , version 3 (04-12-2020)
hal-02156324 , version 4 (07-01-2021)

Identifiants

Citer

Benoît Lalloué, Jean-Marie Monnez, Eliane Albuisson. Streaming constrained binary logistic regression with online standardized data. Journal of Applied Statistics, 2022, 49 (6), pp.1519-1539. ⟨10.1080/02664763.2020.1870672⟩. ⟨hal-02156324v4⟩

Relations

397 Consultations
355 Téléchargements

Altmetric

Partager

More