Explicit degree bounds for right factors of linear differential operators - Archive ouverte HAL
Article Dans Une Revue Bulletin of the London Mathematical Society Année : 2021

Explicit degree bounds for right factors of linear differential operators

Résumé

If a linear differential operator with rational function coefficients is reducible, its factors may have coefficients with numerators and denominatorsof very high degree. When the base field is $\mathbb C$, we give a completely explicit bound for the degrees of the monic right factors in terms of the degree and the order of the original operator, as well as the largest modulus of the local exponents at all its singularities. As a consequence, if a differential operator $L$ has rational function coefficients over a number field, we get degree bounds for its monic right factors in terms of the degree, the order and the height of $L$, and of the degree of the number field.
Fichier principal
Vignette du fichier
BRS_revise.pdf (194.54 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02154679 , version 1 (12-06-2019)
hal-02154679 , version 2 (20-06-2019)
hal-02154679 , version 3 (10-07-2019)
hal-02154679 , version 4 (03-06-2020)

Identifiants

Citer

Alin Bostan, Tanguy Rivoal, Bruno Salvy. Explicit degree bounds for right factors of linear differential operators. Bulletin of the London Mathematical Society, 2021, 53 (1), pp.53--62. ⟨10.1112/blms.12396⟩. ⟨hal-02154679v4⟩
501 Consultations
294 Téléchargements

Altmetric

Partager

More