Non-crossing Brownian paths and Dyson Brownian motion under a moving boundary - Archive ouverte HAL
Article Dans Une Revue Journal of Statistical Physics Année : 2019

Non-crossing Brownian paths and Dyson Brownian motion under a moving boundary

Résumé

We compute analytically the probability $S(t)$ that a set of $N$ Brownian paths do not cross each other and stay below a moving boundary $g(\tau)= W \sqrt{\tau}$ up to time $t$. We show that for large $t$ it decays as a power law $S(t) \sim t^{- \beta(N,W)}$. The decay exponent $\beta(N,W)$ is obtained as the ground state energy of a quantum system of $N$ non interacting fermions in a harmonic well in the presence of an infinite hard wall at position $W$. Explicit expressions for $\beta(N,W)$ are obtained in various limits of $N$ and $W$, in particular for large $N$ and large $W$. We obtain the joint distribution of the positions of the walkers in the presence of the moving barrier $g(\tau) =W \sqrt{\tau}$ at large time. We extend our results to the case of $N$ Dyson Brownian motions (corresponding to the Gaussian Unitary Ensemble) in the presence of the same moving boundary $g(\tau)=W\sqrt{\tau}$. For $W=0$ we show that the system provides a realization of a Laguerre biorthogonal ensemble in random matrix theory. We obtain explicitly the average density near the barrier, as well as in the bulk far away from the barrier. Finally we apply our results to $N$ non-crossing Brownian bridges on the interval $[0,T]$ under a time-dependent barrier $g_B(\tau)= W \sqrt{\tau(1- \frac{\tau}{T})}$.
Fichier principal
Vignette du fichier
1905.08378 (1.23 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02153575 , version 1 (16-12-2023)

Identifiants

Citer

Tristan Gautié, Pierre Le Doussal, Satya N. Majumdar, Gregory Schehr. Non-crossing Brownian paths and Dyson Brownian motion under a moving boundary. Journal of Statistical Physics, 2019, 177, pp.752. ⟨10.1007/s10955-019-02388-z⟩. ⟨hal-02153575⟩
72 Consultations
49 Téléchargements

Altmetric

Partager

More