Young and rough differential inclusions - Archive ouverte HAL
Article Dans Une Revue Revista Matemática Iberoamericana Année : 2021

Young and rough differential inclusions

Résumé

We define in this work a notion of Young differential inclusion dz_t ∈ F(z_t) dx_t , for an α-Hölder control x, with α > 1/2, and give an existence result for such a differential system. As a by-product of our proof, we show that a bounded, compact-valued, γ-Hölder continuous set-valued map on the interval [0,1] has a selection with finite p-variation, for p > 1/γ. We also give a notion of solution to the rough differential inclusion dz_t ∈ F(z_t) dt+G(z_t) dX_t , for an α-Hölder rough path X with α ∈ (1/3 , 1/2] , a set-valued map F and a single-valued one form G. Then, we prove the existence of a solution to the inclusion when F is bounded and lower semi-continuous with compact values, or upper semi-continuous with compact and convex values.
Fichier principal
Vignette du fichier
YDI_final_for_hal_and_arxiv.pdf (506.48 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02148440 , version 1 (05-06-2019)
hal-02148440 , version 2 (07-09-2020)

Identifiants

Citer

Ismaël Bailleul, Antoine Brault, Laure Coutin. Young and rough differential inclusions. Revista Matemática Iberoamericana, 2021, 37 (4), pp.1489 - 1512. ⟨10.4171/rmi/1236⟩. ⟨hal-02148440v2⟩
216 Consultations
244 Téléchargements

Altmetric

Partager

More