Core-Collapse Supernova neutrino detection with KM3NeT - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2019

Core-Collapse Supernova neutrino detection with KM3NeT

Résumé

Core Collapse Supernovae (CCSNe) are explosive phenomena that may occur at the end of the life of massive stars, releasing over 99% of the energy through neutrino emission. While the explosion mechanism is not fully understood, neutrinos are believed to play an important role. The only detection as of today are the 24 neutrinos from SN1987A. The observation of the next Galactic CCSN will lead to important breakthroughs in astroparticle physics. For a Galactic CCSN, the KM3NeT ORCA and ARCA detectors in the Mediterranean Sea will observe a significant neutrino signal via the detection of Cherenkov light, mostly induced by Inverse Beta Decay interactions in sea water. The detection of coincident photons by the 31 photomultipliers of each KM3NeT digital optical module (DOM) allows for an efficient discrimination of the optical backgrounds.The KM3NeT detection sensitivity to a Galactic CCSN and the potential to resolve the neutrino light-curve have been estimated relying on detailed Monte Carlo simulations. Specific criteria are proposed for the online triggering and the participation in the SNEWS network.

Dates et versions

hal-02144278 , version 1 (29-05-2019)

Identifiants

Citer

Marta Colomer Molla, Massimiliano Lincetto. Core-Collapse Supernova neutrino detection with KM3NeT. 8th Very Large Volume Neutrino Telescope Workshop, Oct 2018, Dubna, Russia. pp.05007, ⟨10.1051/epjconf/201920705007⟩. ⟨hal-02144278⟩
40 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More