Multiplicative persistent distances - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Multiplicative persistent distances

Résumé

We define and study several new interleaving distances for persistent cohomology which take into account the algebraic structures of the cohomology of a space, for instance the cup product or the action of the Steenrod algebra. In particular, we prove that there exists a persistent A-infinity-structure associated to data sets and and we define the associated distance. We prove the stability of these new distances for Cech or Vietoris Rips complexes with respect to the Gromov-Hausdorff distance, and we compare these new distances with each other and the classical one, building some examples which prove that they are not equal in general and refine effectively the classical bottleneck distance.
Fichier principal
Vignette du fichier
Multiplicative_persistent_distances.pdf (526.04 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02141757 , version 1 (28-05-2019)
hal-02141757 , version 2 (19-07-2019)

Identifiants

Citer

Grégory Ginot, Johan Leray. Multiplicative persistent distances. 2019. ⟨hal-02141757v2⟩
106 Consultations
290 Téléchargements

Altmetric

Partager

More