A Bayesian model for joint unmixing, clustering and classification of hyperspectral data
Résumé
Supervised classification and spectral unmixing are two methods to extract information from hyperspectral images. However, despite their complementarity, they have been scarcely considered jointly. This paper presents a new hierarchical Bayesian model to perform simultaneously both analysis in order to ensure that they benefit from each other. A linear mixture model is proposed to described the pixel measurements. Then a clustering is performed to identify groups of statistically similar abundance vectors. A Markov random field (MRF) is used as prior for the corresponding cluster labels. It pro-motes a spatial regularization through a Potts-Markov potential and also includes a local potential induced by the classification. Finally, the classification exploits a set of possibly corrupted labeled data provided by the end-user. Model parameters are estimated thanks to a Markov chain Monte Carlo (MCMC) algorithm. The interest of the proposed model is illustrated on synthetic and real data.
Origine | Fichiers produits par l'(les) auteur(s) |
---|